1826
S. Asghari et al. / Tetrahedron Letters 49 (2008) 1824–1827
1
230 mesh) column chromatography using hexane/ethyl acetate (1:5)
The structural assignments made on the basis of the H
and 13C NMR spectra of compounds 4b and 4c were
supported by the measurement of their IR spectra. The
carbonyl regions of the spectra exhibited distinct absorp-
tion bands for each compound. The mass spectra of
4b–4c displayed molecular ion peaks and other fragmenta-
tions involved with the loss of the ester moiety.
as eluent. The solvent was removed to afford product 3a as a white
powder, yield 1.1 g (80%), mp 193–195 °C. IR (KBr) (mmax, cmÀ1):
3474 (NH), 2378 (CN), 1766, 1736 (C@O), 1692 (C@C); 1H NMR
3
(500.1 MHz, CDCl3): dH 1.03 (3H, t, JHH 7 Hz, CH3), 2.06 (3H, s,
3
CH3), 3.04 (3H, s, OCH3), 3.29 (1H, d, JPH 18.5 Hz, CH), 3.69 (3H,
s, OCH3), 3.99–4.04 (2H, m, OCH2), 7.45–7.77 (15H, m, arom), 9.63
(1H, s, NH); 13C NMR (125.8 MHz, CDCl3): dC 13.70 (CH3), 23.24
1
2
(CH3), 41.57 (d, JPC 123.9 Hz, P@C), 44.64 (OCH3), 50.60 (d, JPC
In conclusion, the method presented here carries the
advantage of being performed under neutral conditions
and requires no activation or modification of the reactants.
We anticipate that the reactions described herein represent
a simple process in the synthesis of polyfunctionalized a,b-
unsaturated c-lactams of interest.
3
14.0 Hz, CH), 52.3 (OCH3), 62.64 (OCH2), 62.97 (d, JPC 4.0 Hz,
quaternary carbon), 116.75 (CN), 125.78 (d, JPC 93.5 Hz, Cipso),
128.75 (d, 3JPC 12.3 Hz, Cmeta), 132.39 (Cpara), 134.14 (d, 2JPC 8.3 Hz,
1
2
Cortho), 164.55 (C@O, amide), 170.08 (C@O, ester), 170.91 (d, JPC
5.3 Hz, C@O ester), 172.42 (d, JPC 12.2 Hz, C@O ester); 31P NMR
3
(202.5 MHz, CDCl3): dP 26.24; MS (EI), m/z (%): 574 (1), 278 (5), 262
(2), 239 (30), 221 (91), 175 (44), 57 (100), 43 (21). Anal. Calcd for
C31H31N2O7P (574.57): C, 64.80; H, 5.44; N, 4.88. Found: C, 64.86;
H, 5.49; N, 4.83.
References and notes
Compound 3b: White powder, mp 164–166 °C, yield 85%, IR (KBr)
(mmax, cmÀ1): 3459 (NH),1762, 1740 (C@O), 1681 (C@C); 1H NMR
1. Casiraghi, G.; Spanu, P.; Rassu, G.; Pinna, L.; Ulghri, F. J. Org.
Chem. 1994, 59, 2906–2909.
2. Griffart, B. D.; Langois, N. Tetrahedron Lett. 1994, 35, 119–122.
3. Bergman, J.; Pelcman, B. Tetrahedron Lett. 1978, 28, 4441–4444.
4. Ma, D.; Ma, J.; Ding, W.; Dal, L. Tetrahedron: Asymmetry 1996, 7,
2365–2370.
5. Jouin, P.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1987, 1177–1182.
6. Omura, S.; Iwai, Y.; Hiraho, A.; Nakagawa, A.; Awaya, J.; Tsuchiya,
H.; Takahashi, Y.; Masuma, R. J. Antibiot. 1977, 30, 275–282.
7. Kaneko, T.; Wong, H.; Okamoto, K. T.; Clardy, J. Tetrahedron Lett.
1985, 26, 4015–4018.
8. Nettleton, D. E.; Doyle, T. W.; Krishnan, B.; Matsumoto, G. K.;
Clardy, I. Tetrahedron Lett. 1985, 26, 4011–4014.
9. (a) Furusaki, A.; Hashiba, N.; Matsumoto, T.; Hirano, A.; Iwai, Y.;
Omura, S. J. Chem. Soc., Chem. Commun. 1978, 800–801; (b)
Furusaki, A.; Hashiba, N.; Matsumoto, T.; Hirano, A.; Iwai, Y.;
Omura, S. Bull. Chem. Soc. Jpn. 1982, 55, 3681–3685.
10. (a) Sezaki, M.; Sasaki, T.; Nakazawa, T.; Takeda, U.; Iwata, M.;
Watanabe, T.; Koyama, M.; Kai, F.; Shomura, T.; Kojima, M. J.
Antibiot. 1985, 38, 1439–1444; (b) Kase, H.; Iwahashi, K.; Matsuda,
Y. J. Antibiot. 1986, 39, 1059–1065; (c) Nakanishi, S.; Matsuda, Y.;
Iwahashi, K.; Kase, H. J. Antibiot. 1986, 39, 1066–1071.
11. Shen, F.; Bai, A.-P.; Gue, Z.-R.; Cheng, G.-F. Acta Pharmacol. Sin.
2002, 762–768.
12. Bosch, J.; Roca, T.; Catena, J.-L.; Llorens, O.; Perez, J.-J.; Lagunas,
C.; Fernandez, A. G.; Miquel, I.; Fernandez-Serrat, A.; Ferrerons, C.
Bioorg. Med. Chem. Lett. 2000, 10, 1745–1748.
3
(500.1 MHz, CDCl3): (3b-Z, 58%) dH 0.4 (3H, t, JHH 7.1 Hz, CH3),
3
3
1.01 (3H, t, JHH 7.1 Hz, CH3), 1.24 (3H, t, JHH 7.2 Hz, CH3), 2.03
3
(3H, s, CH3), 3.28 (1H, d, JPH 18.5 Hz, CH), 3.45–3.53 (2H, m,
OCH2), 3.98–4.02 (2H, m, OCH2), 4.20–4.26 (2H, m, OCH2), 7.45–
7.76 (15H, m, arom), 9.63 (1H, s, NH); (3b-E, 42%): dH 0.34 (3H, t,
3JHH 7.1 Hz, CH3), 1.09 (3H, t, JHH 7.1 Hz, CH3), 1.25 (3H, t, JHH
7.3 Hz, CH3), 2.00 (3H, s, CH3), 3.18 (1H, d, 3JPH 18.5 Hz, CH), 3.67–
3.73 (2H, m, OCH2), 3.90–3.97 (2H, m, OCH2), 4.08–4.12 (2H, m,
OCH2), 7.45–7.76 (15H, m, arom), 10.17 (1H, s, NH); 13C NMR
(125.8 MHz, CDCl3) (3b-Z): dC 13.66, 13.75, and 14.18 (3CH3), 23.21
3
3
1
2
(CH3), 41.27 (d, JPC 124.0 Hz, P@C), 50.70 (d, JPC 13.9 Hz, CH),
3
58.56, 61.45, and 62.51 (3OCH2), 63.00 (d, JPC 3.8 Hz, quaternary
carbon) 116.82 (CN), 126.03 (d, JPC 93.5 Hz, Cipso), 128.64 (d, JPC
12.4 Hz, Cmeta), 132.34 (Cpara), 134.23 (d, JPC 8.2 Hz, Cortho), 164.47
1
3
2
2
(C@O, amide), 169.99 (C@O, ester), 170.45 (d, JPC 5.5 Hz, C@O,
2
ester), 172.02 (d, JPC 12.3 Hz, C@O, ester); (3b-E): dC 13.53, 13.61,
1
and 14.14 (3CH3), 22.77(CH3), 40.09 (d, JPC 125.3 Hz, P@C), 49.71
(d, 2JPC 13.4 Hz, CH), 58.67, 61.58, and 62.95 (3OCH2), 61.36 (d, 3JPC
1
6.0 Hz, quaternary carbon), 116.96 (C„N), 126.51 (d, JPC 93.1 Hz,
3
2
C
ipso), 128.69 (d, JPC 12.5 Hz, Cmeta), 132.49 (Cpara), 132.94 (d, JPC
8.1 Hz, Cortho), 165.03(C@O, amide), 169.94 (C@O, ester), 170.00 (d,
3
2JPC 5.0 Hz, C@O, ester), 171.95 (d, JPC 12.1 Hz, C@O, ester); 31P
NMR (202.5 MHz, CDCl3): dP 25.68, 26.28; MS (EI), m/z (%): 602
(1), 434 (4), 262 (8), 184 (16), 152 (24), 77 (88), 43 (100). Anal. Calcd
for C33H35N2O7P (602.63): C, 65.77; H, 5.85; N, 4.65. Found: C,
65.82; H, 5.89; N, 4.69.
Compound 3c: White powder, mp 120–123 °C, yield 80%; IR (KBr)
(mmax, cmÀ1): 3437 (NH), 2356 (CN), 1776, 1732 (C@O), 1689 (C@C);
1H NMR (500.1 MHz, CDCl3): dH 0.88 (9H, s, CMe3), 1.01 (3H, t,
3JHH 7.1 Hz, CH3), 1.46 (9H, s, CMe3), 2.08 (3H, s, CH3), 3.13 (1H, d,
3JPH 18.8 Hz, CH), 3.94–4.06 (2H, m, OCH2), 7.23–7.92 (15H, m,
arom), 9.95 (1H, s, NH); 13C NMR(125.8 MHz, CDCl3): dC 13.65
13. (a) Langlois, N.; Radom, M.-O. Tetrahedron Lett. 1998, 39, 857–860;
(b) Langlois, N.; Calvez, O.; Radom, M.-O. Tetrahedron Lett. 1997,
38, 8037–8040; (c) Luker, T.; Koot, W.-J.; Hiemstra, H.; Speckamp,
W. N. J. Org. Chem. 1998, 63, 220–221.
14. (a) Mattern, R.-H. Tetrahedron Lett. 1996, 37, 291–294; (b) Woo,
C.-K.; Jones, K. Tetrahedron Lett. 1991, 32, 6949–6952; (c) Zhang, J.;
Blazecka, P. G.; Davidson, J. G. Org. Lett. 2003, 5, 553–556; (d)
Chatani, C.; Kamitani, A.; Murai, S. J. Org. Chem. 2002, 67, 7014–
7018.
15. Yavari, I.; Asghari, S.; Samadi-Zadeh, M. M. Iran. J. Chem. Chem.
Eng. 1998, 17, 38–41.
16. Yavari, I.; Asghari, S.; Esmaili, A. A. J. Chem. Res. 1999, 234–235.
17. Asghari, S.; Khabbazi-Habibi, A. J. Phosphorus, Sulfur, Silicon 2005,
180, 2451–2456.
1
(CH3), 23.15 (CH3), 28.08 and 28.12 (2CMe3), 41.01 (d, JPC
2
124.7 Hz, P@C), 51.67 (d, JPC 14.1 Hz, CH), 62.30 (OCH2), 63.02
3
(d, JPC 3.6 Hz, quaternary carbon), 78.45 and 81.92 (2OCMe3),
1
3
116.80 (CN), 125.8 (d, JPC 93.5 Hz, Cipso), 128.42 (d, JPC 12.3 Hz,
2
Cmeta), 132.13 (Cpara), 134.77 (d, JPC 8.5 Hz, Cortho), 164.49 (C@O,
2
amide), 169.78 (d, JPC 6.0 Hz, C@O ester), 169.84 (C@O, ester),
171.77 (d, 3JPC 11.82 Hz, C@O ester); 31P NMR (202.5 MHz, CDCl3):
dP 25.85; MS (EI), m/z (%): 658 (1), 332 (4), 295 (34), 262 (5), 105 (4),
57 (48), 44 (100). Anal. Calcd for C37H43N2O7P (658.73): C, 67.46; H,
6.58; N, 4.25. Found: C, 67.51; H, 6.53; N, 4.21.
18. General procedure for the preparation of compound 3. To a magnet-
ically stirred solution of 0.52 g of triphenylphosphine (2 mmol) and
0.34 g of ethyl acetamidocyanoacetate (2 mmol) in 5 ml of dry CH2Cl2
was added, dropwise, a mixture of 0.28 g of dimethyl acetylenedi-
carboxylate (2 mmol) in 3 ml of dry CH2Cl2 at À5 °C over 10 min.
The reaction mixture was then allowed to warm to room temperature
and stirred for 24 h. The solvent was removed under reduced pressure
and the residue was purified by silica gel (Merck Silica Gel 60, 70–
Preparation of 2-ethyl-3-methyl 1-acetyl-2-cyano-5-oxo-2,5-dihydro-
1H-pyrrole-2,3- dicarboxylate 4a. Compound 3a was refluxed in
toluene for 96 h. The solvent was removed under reduced pressure
and the residue was purified by silica gel (Merck, Silica Gel, 230–
400 mesh) column chromatography using hexane/ethyl acetate (3:1)
as eluent. The solvent was removed under reduced pressure and 4a