A R T I C L E S
Elsner et al.
of efficient methods for the preparation of allenes based on either
classical organic chemistry or organometallic reagents.6 The
conjugate addition to electron-deficient allenes gives rise to â,γ-
unsaturated carbonyl compounds (Scheme 1, eq b) bearing a
nonconjugated double bond as a further functionality available
compared to the 1,4-addition to enoates and enones. This makes
them even more versatile as structural motives and chiral
building blocks for further elaborations. However, since allenes
possess no prochiral center at the â-carbon atom, the chirality
must be induced by their reaction partner(s), which leads as a
consequence to new developments in asymmetric methodology.
This was just recently very effectively underlined by the group
of Shibasaki, who demonstrated that the â,γ-double bond of
allenoates, in situ activated by the addition of dialkylzinc
reagents, can be used within a catalytic asymmetric multicom-
ponent process, serving as a nucleophile to form quaternary
stereocenters via vinylogous aldol addition.7 The same group
and the group of Riant also reported a catalytic asymmetric
reductive aldol reaction of allenic esters to ketones.8
In contrast, if a catalytic amount of a tertiary phosphine is
present, attack of the nucleophile to the electron-deficient allene
occurs at the γ-carbon atom, resulting in an inverse addition
(Scheme 1, eq c). It was shown by Zhang et al. that this
umpolung addition reaction, first described by the group of
Trost9 for alkynoates and by the group of Lu10 for allenoates,
can be performed in a stereoselective fashion with chiral
phosphines and â-ketoesters as nucleophiles.11 The zwitterionic
dipole resulting from addition of a tertiary phosphine to
allenoates can also be used for [3 + 2]-cycloadditions with
electron-deficient alkenes. This reaction was also pioneered by
Lu et al.,12 and progress toward a catalytic asymmetric version
of this kind of annulation was made by the groups of Zhang,13
Fu,14 Wallace,15 and Miller.16 The group of Miller also noted
that the course of this reaction can be changed to give a
conjugate addition product if the phosphine catalyst is exchanged
for an amine catalyst.17
remain scarce,19 we wondered if we could apply asymmetric
organocatalysis to get direct access to enantioenriched â,γ-
unsaturated carbonyl compounds with a vinyl-substituted qua-
ternary carbon center. In this context, asymmetric phase-transfer
catalysis (PTC)20 with, e.g., â-ketoesters as nucleophiles is a
powerful tool, as demonstrated by several highly efficient
transformations developed by our group and others.21 We now
wish to report our efforts in the development of the first
enantioselective, phase-transfer-catalyzed conjugate addition of
cyclic â-ketoesters 1 to electron-deficient allenes 3 (Scheme
2). Furthermore, the utility of the use of allenes for the synthesis
of vinyl-substituted chiral carbon centers prompted us to the
realization of an asymmetric addition of benzophenone imines
222 derived from glycine leading to a very simple and direct
access to pharmaceutically interesting optically active R-vinyl-
substituted R-amino acids 5. Finally, the products 4 and 5 arising
from this catalytic process are shown to be suitable for
subsequent transformations yielding valuable optically active
building blocks, e.g., cis-fused bicyclic lactones and γ-lactames.
Scheme 2. Phase-Transfer-Catalyzed Asymmetric Conjugate
Addition to Electron-Deficient Allenes
Since formation of all-carbon quaternary stereocenters is a
significant challenge in organic chemistry18 and examples of
stereoselective conjugate additions to electron-deficient allenes
(6) For reviews, see: (a) Miesch, M. Synthesis 2004, 746. (b) Hoffmann-Ro¨der,
A.; Krause, N. Angew. Chem., Int. Ed. 2002, 41, 2933. (c) Krause, N.;
Hoffmann-Ro¨der, A. Tetrahedron 2004, 60, 11671.
(7) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007,
129, 7439.
(8) (a) Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew. Chem.,
Int. Ed. 2006, 45, 1292. (b) Zhao, D.; Oisaki, K.; Kanai, M.; Shibasaki,
M. Tetrahedron Lett. 2006, 47, 1403. (c) Zhao, D.; Oisaki, K.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440.
(9) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167.
(10) Zhang, C.; Lu, X. Synlett 1995, 645.
(11) Chen, Z.; Zhu, G.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Org. Chem.
1998, 63, 5631.
(12) (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. (b) Xu, Z.; Lu, X.
Tetrahedron Lett. 1999, 40, 549. (c) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem.
Res. 2001, 34, 535. (d) Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002, 67,
8901. (e) Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463.
(20) For reviews, see: (a) O’Donnell, M. J. In Catalytic Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, Germany, 2000; p 727.
(b) Shioiri, T.; Arai, S. In Stimulating Concepts in Chemistry; Vogtle, F.,
Stoddard, J. F., Shibasaki, M., Eds.; Wiley-VCH: Weinheim, Germany,
2000; p 123. (c) Vachon, J.; Lacour, J. Chimia 2006, 60, 266. (d) Gaunt,
M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery Today
2007, 12, 8.
(21) (a) Manabe, K. Tetrahedron Lett. 1998, 39, 5807. (b) Manabe, K.
Tetrahedron 1998, 54, 14465. (c) Dehmlov, E. V.; Du¨ttmann, S.; Neumann,
B.; Stammler, H.-G. Eur. J. Org. Chem. 2002, 2087. (d) Ooi, T.; Miki, T.;
Taniguchi, M.; Shiraishi, M.; Takeuchi, M.; Maruoka, K. Angew. Chem.,
Int. Ed. 2003, 42, 3796. (e) Park, E. J.; Kim, M. H.; Kim, D. Y. J. Org.
Chem. 2004, 69, 6897. (f) Bella, M.; Kobbelgaard, S.; Jørgensen, K. A. J.
Am. Chem. Soc. 2005, 127, 3670. (g) Kobbelgaard, S.; Bella, M.; Jørgensen,
K. A. J. Org. Chem. 2006, 71, 4980. (h) Poulsen, T. B.; Bernardi, L.; Bell,
M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 6551. (i) Poulsen,
T. B.; Bernardi, L.; Alema´n, J.; Overgaard, J.; Jørgensen, K. A. J. Am.
Chem. Soc. 2007, 129, 441. (j) Bernardi, L.; Lo´pez-Cantarero, J.; Niess,
B.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 5772. (k) Alema´n, J.;
Reyes, E.; Richter, B.; Overgaard, J.; Jørgensen, K. A. Chem. Commun.
2007, 3921.
(13) Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem.
Soc. 1997, 119, 3836.
(14) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426.
(15) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72, 1051.
(16) Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988.
(17) Evans, C. A.; Miller, S. J. J. Am. Chem. Soc. 2003, 125, 12394.
(18) For reviews, see, e.g.: (a) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5363. (b) Christoffers, J.; Baro, A. AdV. Synth. Catal.
2005, 347, 1473. (c) Trost, B. M.; Jiang, C. Synthesis 2006, 369. (d) Corey,
E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
(19) For achiral examples, see: (a) Lucas, S.; Kazmaier, U. Synlett 2006, 255.
(b) Silvestri, M. A.; Bromfield, D. C.; Lepore, S. D. J. Org. Chem. 2005,
70, 8239. (c) Dieter, R. K.; Lu, K. J. Org. Chem. 2000, 65, 8715. (d) Dieter,
R. K.; Lu, K. Tetrahedron Lett. 1999, 40, 4011. (e) Sugita, T.; Eida, M.;
Ito, H.; Komatsu, N.; Abe, K.; Suama, M. J. Org. Chem. 1987, 52, 3789.
For a chiral example, see: El Achqar, A.; Boumzebra, M.; Roumestant,
M. L.; Viallefont, P. Tetrahedron 1988, 44, 5319.
9
4898 J. AM. CHEM. SOC. VOL. 130, NO. 14, 2008