3 C. D. Dimitrakopoulos and R. L. Malenfant, Adv. Mater., 2002, 14,
99.
(ESI† Fig. S4). The mobility of DPV-BTBT was 20 times higher
than that of DCV-BTBT. When used as a channel semiconductor
in OTFTs, DCV-BTBT exhibited lower FET mobility than
DPV-BTBT. This is not surprising since the charge transport in
organic semiconductors is dominated by the crystal structure,
and thus the less-ordered DCV-BTBT would not be expected to
exhibit a high mobility (0.024 cm2 Vꢀ1 sꢀ1, ESI† Fig. S1).20
Fig. 7 shows the AFM images of 30- nm-thick films of
DPV-BTBT deposited on OTS-treated SiO2/Si at 25, 50, 80 and
100 ꢂC. At 80 ꢂC, the molecules become more ordered, and
a network of interconnected grains can be observed in the
DPV-BTBT sample. The AFM step heights for the lamellar
structure of the DPV-BTBT grains (as obtained from the films
deposited at 80 ꢂC) correspond well to the d-spacing obtained
from XRD and the calculated molecular length (ESI† Fig. S3).
4 R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burrouhes,
R. N. Marks, C. Taliani, D. D. C. Bardley, D. A. DosSantos,
J. L. Bredas, M. Logdlund and W. R. Salanek, Nature, 1999, 397, 121.
5 (a) C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct.
Mater., 2001, 11, 15; (b) K. M. Coakley and M. D. McGhee, Chem.
Mater., 2004, 16, 4533.
6 (a) B. Crone, A. Dodabalapur, Y.-Y. Lin, R. W. Filas, Z. Bao,
A. LaDuca, R. Sarpeshkar, H. E. Katz and W. Li, Nature, 2000,
403, 521; (b) Y.-Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao,
W. Li, K. Baldwin, V. R. Raju and H. E. Katz, Appl. Phys. Lett.,
1999, 74, 2714.
7 (a) A. T. Brown, A. Pomp, C. M. Hart and D. M. Deleeuw, Science,
1995, 270, 972; (b) C. J. Drury, C. M. Mutsaers, C. M. Hart,
M. Matters and D. M. de Leeuw, Appl. Phys. Lett., 1998, 73, 108.
8 (a) K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubi and
Y. Kanug, J. Am. Chem. Soc., 2006, 128, 12604; (b) K. Takimiya,
Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima and T. Otsubo,
J. Am. Chem. Soc., 2006, 128, 3044; (c) H. Ebata, E. Miyazaki,
T. Yamamoto and D. Takimiya, Org. Lett., 2007, 9, 4499; (d)
H. Ebata, T. Izawa, E. Miyazaki, D. Takimiya, M. Ikeda,
H. Kuwabara and T. Yui, J. Am. Chem. Soc., 2007, 129, 15732.
9 T. Yamamoto and D. Takimiya, J. Am. Chem. Soc., 2007, 129, 2224.
10 (a) M.-C. Um, J. J. Jang, J.-P. Hong, D. Y. Yoon, S. H. Lee, J.-
J. Kim and J.-I. Hong, J. Mater. Chem., 2008, 18, 2234; (b)
N. Drolet, J. F. Morin, N. Leclerc, S. Wakim, Y. Tao and
M. Leclerc, Adv. Funct. Mater., 2005, 15, 1671; (c) T. C. Gorjanc,
I. Levesque and M. D’lori, Appl. Phys. Lett., 2004, 84, 930; (d)
H. Klauk, U. Zschieschang, R. T. Weitz, H. Mong, F. Sun,
G. Nunes, D. E. Keys, C. R. Fincher and Z. Xiang, Adv. Mater.,
2007, 19, 3882.
Conclusions
In summary, a series of substituted vinyl-BTBT molecules were
synthesized by a route involving the Horner–Emmons coupling
reaction. The oligomers show high thermal stability. DPV-BTBT
exhibits excellent field-effect performances, with a mobility as
high as 0.46 and an on/off ratio of up to 1.2 ꢃ 107. It is notable
that the mobility of DPV-BTBT does not significantly change
even after the device has been exposed to air for at least 60 days
(further monitoring is in progress), showing that it is a promising
air-stable p-channel organic semiconductor for application in
all-organic flexible electronic devices.
11 (a) G. Distefano, M. Da Colle, D. Jones, M. Zambianchi,
L. Favvafetto and A. Modelli, J. Phys. Chem., 1993, 97, 3504; (b)
E. Orti, P. M. Viruela, J. Sanchez-Marin and F. Tomas, J. Phys.
Chem., 1995, 99, 4955; (c) J. Roncali, Chem. Rev., 1997, 97, 173.
12 C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura,
N. Yoshimoto, P. Raynal, A. EI Dassmi and F. Fages, J. Am.
Chem. Soc., 2005, 127, 16346.
13 H. Meng, F. Sun, M. B. Goldfinger, F. Gao, D. J. Londono,
W. J. Marshal, G. S. Blackman, D. D. Dobbs and D. E. Keysa,
J. Am. Chem. Soc., 2006, 128, 9304.
We are currently investigating the OTFT devices based on
DCV-BTBT and DPV-BTBT for improving their performances.
In addition, we are attempting the introduction of other alkyl
chains into DCV-BTBT and DPV-BTBT for the synthesis of new
soluble oligomers.
14 S. Pfeiffer and H. H. Horhold, Macromol. Chem. Phys., 1998, 200,
1870.
15 (a) P. Kaszynski and D. A. Dougherty, J. Org. Chem., 1993, 58, 5209;
(b) F. Nuesh and M. Gratzel, Chem. Phys., 1995, 193, 1; (c) H. Meng,
J. Zheng, A. J. Lovinger, B.-C. Wang, P. G. V. Patten and A. Bao,
Chem. Mater., 2003, 15, 1778.
16 J. H. Park, D. S. Chung, J. W. Park, T. Ahn, H. Kong, Y. K. Jung,
J. Lee, M. H. Y, C. E. Park, S. K. Kwon and D. D. Shim,
Org. Lett., 2007, 9, 2573.
17 I. G. Hill, J. Hwang, A. Kahn, C. Hung and J. E. McDermott, Appl.
Phys. Lett., 2007, 90, 012109.
Acknowledgements
This work was supported by grants (F0004030-2007-23,
F0004071-2007-23) from the Information Display R&D Center,
one of the 21st Century Frontier R&D Program funded by the
Ministry of Commerce, Industry, and Energy of the Korean
Government, and Seoul R&BD.
18 M. S. Liu, Y. Liu, R. C. Urian, H. Ma and A. K-Y. Jen, J. Mater.
Chem., 1999, 9, 2201.
References
1 M. H. Yoon, S. A. DiBenedetto, A. Facchetti and T. J. Mark, J. Am.
Chem. Soc., 2006, 128, 9598.
2 K. Takimiya, Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima and
T. Otsubo, J. Am. Chem. Soc., 2006, 128, 3044.
19 J. Locklin, D. Li, S. C. B. Mannsfeld, E.-J. Borkent, H. Meng,
R. Advincula and Z. Bao, Chem. Mater., 2005, 17, 3366.
20 Y. Wu, Y. Li, S. Gardner and B. S. Ong, J. Am. Chem. Soc., 2005, 127,
614.
This journal is ª The Royal Society of Chemistry 2008
J. Mater. Chem., 2008, 18, 4698–4703 | 4703