aryl halides,8 [3 + 2] annulation of aromatic aldimines and
acetylenes,9 and cyclization of 2-alkyl-1-ethynylbenzenes via
a 1,5-hydrogen shift of ruthenium-vinylidene intermediates,10
etc. Haloindenes are important derivatives that provide further
structural complexation by proceeding new C-C, C-N, or C-S
bond-forming reactions. There are only limited reports for the
synthesis of haloindenes, such as the bromination of indans or
indenes11 and HI-mediated cyclization of o-alkynylstyrenes,12
etc. However, most of these methods are only effective in the
formation of simple haloindenes or specific-substituted indenes,
it is still difficult to synthesize haloindenes with a wide range
of different substituents. In this paper, we would like to report
a convenient and catalytic route for 3-iodo-1H-indenes through
Friedel-Crafts cyclization of iodinated allylic alcohols.
Efficient Synthesis of 3-Iodoindenes via
Lewis-Acid Catalyzed Friedel-Crafts Cyclization
of Iodinated Allylic Alcohols
Xiaobo Zhou, Huimin Zhang, Xin Xie, and Yanzhong Li*
Institute of Medicinal Chemistry, and Shanghai Key
Laboratory of Green Chemistry and Chemical Processes,
Department of Chemistry, East China Normal UniVersity,
3663 North Zhongshan Road, Shanghai, 200062, P. R. China
ReceiVed January 31, 2008
SCHEME 1
A convenient BF3 ·Et2O-catalyzed Friedel-Crafts cyclization
of iodinated allylic alcohols is reported. The present reaction
provides an efficient protocol to 3-iodo-1H-indene derivatives
in good to high yields under mild conditions. Further, the
iodoindene derivatives are valuable synthetic building blocks
for elaboration of molecular complexity, such as in the
construction of multiaryl substituted indenes by Suzuki
coupling reaction.
It was known that alkynes such as diphenylacetylene undergo
selective coupling with aldehydes or ketones mediated by
zirconocene-ethylene complex to form five-membered oxazir-
conacycles.13 Iodonolysis of this metallacycle affords the desired
iodinated allylic alcohols 1.13f,g Thus, a series of alcohol 1 were
easily prepared in 35% ∼ 55% yields using this method. With
allylic alcohol 1 in hand, we were interested in exploring the
feasibility of cyclodehydration of 1 to haloindenes. We began
our investigation with 3-iodo-1,2,3-triphenylprop-2-en-1-ol 1a
(4) (a) Deno, N. C.; Pittman, C.; Turner, J. O. J. Am. Chem. Soc. 1965, 87,
2153. (b) Miller, W.; Pittman, C. J. Org. Chem. 1974, 39, 1955. (c) Olah, G. A.;
Asensio, G.; Mayr, H. J. Org. Chem. 1978, 43, 1518. (d) Singh, G.; Ila, H.;
Junjappa, H. Synthesis 1986, 744. (e) Pittman, C.; Miller, W. G. J. Am. Chem.
Soc. 1973, 95, 2947. (f) Gassman, P. G.; Ray, J. A.; Wenthold, P. G.; Mickelson,
J. W. J. Org. Chem. 1991, 56, 5143. (g) Xi, Z.; Guo, R.; Mito, S.; Yan, H.;
Kanno, K.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2003, 68, 1252. (h) Hu,
Q.; Li, D.; Zhang, H.; Xi, Z. Tetrahedron Lett. 2007, 48, 6167.
(5) (a) Battiste, M. A.; Halton, B.; Grubbs, R. H. Chem. Commun. 1967,
907. (b) Parham, W. E.; Egberg, D. C. J. Org. Chem. 1972, 37, 1545. (c) Halton,
B.; Kulig, M.; Battiste, M. A.; Perreten, J.; Gibson, D. M.; Griffin, G. W. J. Am.
Chem. Soc. 1971, 93, 2327. (d) Padwa, A.; Blacklock, T. J.; Getman, D.;
Hatanaka, N. J. Am. Chem. Soc. 1977, 99, 2344. (e) Padwa, A.; Blacklock, T. J.;
Loza, R. J. Org. Chem. 1982, 47, 3712. (f) Semmelhack, M. F.; Ho, S.; Cohen,
D.; Steigerwald, M.; Lee, M. C.; Lee, G.; Gilbert, A. M.; Wulff, W. D.; Ball,
R. G. J. Am. Chem. Soc. 1994, 116, 7108.
Multisubstituted indene derivatives are very important com-
pounds as they are useful building blocks for various biologically
active molecules.1 They can also be utilized as ligands in tailored
metallocene complexes, especially for group 4 metallocenes in
the catalysis of olefin polymerization.2 Consequently, much
attention has been paid to the synthesis of indene derivatives.3
The most effective methods for their synthesis include acid-
catalyzed cyclodehydration of the phenyl-substituted allylic
alcohols4 or cyclization of the phenyl-substituted alkenes,5 the
ring expansion of substituted cyclopropenes,6 and addition of
organometals to 1-indanone followed by dehydration,7 etc. In
addition to these classical methods, metal-catalyzed protocols
have also been well developed in recent years, such as
palladium-catalyzed carboannulation of internal alkynes with
(6) Yoshida, H.; Kato, M.; Ogata, T. J. Org. Chem. 1985, 50, 1145.
(7) Greifenstein, L. G.; Lambert, J. B.; Nienhuis, R. J.; Fried, H. E.; Pagani,
G. A. J. Am. Chem. Soc. 1981, 46, 5125.
(8) Zhang, D.; Liu, Z.; Yum, E. K.; Larock, R. C. J. Org. Chem. 2007, 7,
2–251.
(1) (a) Korach, K. S.; Metzler, M.; McLachlan, J. A. J. Biol. Chem. 1979,
254, 8963. (b) Schneider, M. R.; Ball, H. J. Med. Chem. 1986, 29, 75. (c)
Senanayake, C.; Edward Roberts, F.; DiMichele, L.; Ryan, K.; Liu, J.;
Fredenburgh, L.; Foster, B. Tetrahedron Lett. 1995, 36, 3993. (d) Harrowven,
D. C.; Newman, N. A.; Knight, C. A. Tetrahedron Lett. 1998, 39, 6757. (e)
Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 2397. and references therein. (f)
Wang, Y.; Mo, S.-Y.; Wang, S.-J.; Li, S.; Yang, Y.-C.; Shi, J.-G. Org. Lett.
2005, 7, 1675.
(9) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2005, 127, 13498.
(10) Odedra, A.; Datta, S.; Liu, R.-S. J. Org. Chem. 2007, 72, 3289.
(11) (a) Tutar, A.; Cakmak, O.; Balci, M. Tetrahedron 2001, 57, 9759. (b)
Lindley, W. A.; MacDowell, D. W. H. J. Org. Chem. 1982, 47, 705. (c) Ivchenko,
N. B.; Ivchenko, P. V.; Nifant’ev, I. E.; Kotov, V. V. Russ. Chem. Bull. 2000,
49, 942.
(12) Saito, S.; Homma, M.; Gevorgyan, V.; Yamamoto, Y. Chem. Lett. 2000,
722.
(2) (a) Cadierno, V.; Diez, J.; Pilar, G. M.; Gimeno, J.; Lastra, E. Coord.
Chem. ReV. 1999, 193-19, 147. (b) Alt, H. G.; Ko¨ppl, A. Chem. ReV. 2000,
100, 1205. (c) Zargarian, D. Coord. Chem. ReV. 2002, 233-234, 157. (d) Leino,
R.; Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem. 2004, 3201.
(13) (a) Takahashi, T.; Kageyama, M.; Denisov, V.; Hara, R.; Negishi, E.
Tetrahedron Lett. 1993, 34, 687. (b) Cope´ret, C.; Negishi, E.; Xi, Z.; Takahashi,
T. Tetrahedron Lett. 1994, 35, 695. (c) Zhao, C.; Yu, T.; Xi, Z. Chem. Commun.
2002, 142. (d) Zhao, C.; Yan, J.; Xi, Z. J. Org. Chem. 2003, 68, 4355. (e)
Takahashi, T.; Xi, C.; Xi, Z.; Kageyama, M.; Fischer, R.; Nakajima, K.; Negishi,
E. J. Org. Chem. 1998, 63, 6802. (f) Cope´ret, C.; Sugihara, T.; Wu, G.;
Shimoyama, I.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 3422. (g) Guo, S.;
Zhang, H.; Song, F.; Liu, Y. Tetrahedron 2007, 63, 2009.
(3) (a) For reviews, see: Heller, H. G. In Rodd’s Chemistry of Carbon
Compounds, 2nd ed.; Correy, S.; Ansell, M. F., Eds.; Elsevier: Amsterdam, The
Netherlands, 1988; Vol. 3. (b) Okuda, J. Top. Curr. Chem. 1991, 160, 97. (c)
Halterman, R. L. Chem. ReV. 1992, 92, 965.
3958 J. Org. Chem. 2008, 73, 3958–3960
10.1021/jo800232p CCC: $40.75 2008 American Chemical Society
Published on Web 04/18/2008