Chemoselective Formation of 8,9-Epoxy-limonene
1289
complex immobilized in mesoporous MCM-41 as a heterogeneous catalyst for
selective alkene epoxidations. J. Org. Chem. 1998, 63 (21), 7364–7369;
(j) Nam, W.; Kim, H. J.; Kim, S. H.; Ho, R. Y. N.; Valentine, J. S. Metal
complex-catalyzed epoxidation of olefins by dioxygen with co-oxidation of
aldehydes. A mechanistic study. Inorg. Chem. 1996, 35 (4), 1045–1049.
´
`
5. (a) Fraile, J. M.; Garcıa, J. I.; Mayoral, J. A.; Menorval, L. C.; Rachdi, F. A new
titanium-silica catalyst for the epoxidation of nonfunctionalized alkenes and allylic
alcohols. J. Chem. Soc., Chem. Commun. 1995, 5, 539–540; (b) Cativiela, C.;
Fraile, J. M.; Garcia, J. I.; Mayoral, J. A. A new titanium-silica catalyst for the epox-
idation of alkenes. J. Mol. Catal. A: Chemical 1996, 112 (2), 259–267; (c) Van der
Waal, J. C.; Rigutto, M. S.; van Bekkum, H. Zeolite titanium beta as a selective
catalyst in the epoxidation of bulky alkenes. Appl. Catal., A 1998, 167 (2), 331–342.
6. Mizuno, N.; Tateishi, M.; Hirose, T.; Iwamoto, M. Regioselectivity in epoxidation
of dienes on PW11CoO395- by molecular oxygen in the presence of aldehyde.
Chem. Lett. 1993, 11, 1985–1986.
7. Cheng, W.-C.; Fung, W.-H.; Che, C.-M. tert-Butyl hydroperoxide epoxidation of
alkenes catalyzed by ruthenium complex of 1,4,7-trimethyl-1,4,7-triazacyclono-
nane. J. Mol. Catal. A: Chemical 1996, 113 (1–2), 311–319.
8. (a) Kulikova, V. S.; Gritsenko, O. N.; Shteinman, A. A. Molecular mechanism of
alkane oxidation involving binuclear iron complexes. Mendeleev Commun. 1996,
3, 119–120; (b) Schulz, M.; Kluge, R.; Lipke, M. Substitution of arylsulfonyl imi-
dazolides by hydrogen peroxide: Aryl sulfonic peracids as oxidants for olefins.
Synlett 1993, 12, 915–918; (c) Al-Ajlouni, A. M.; Espenson, J. H. Kinetics and
mechanism of the epoxidation of alkyl-substituted alkenes by hydrogen
peroxide, catalyzed by methylrhenium trioxide. J. Org. Chem. 1996, 61 (12),
3969–3976; (d) Villa, A. L.; Des Vos, D. E.; Montes, C.; Jacobs, P. A.
Selective epoxidation of monoterpenes with methyltrioxorhenium and H2O2.
Tetrahedron Lett. 1998, 39 (46), 8521–8524; (e) Neumann, R.; Juwiler, D. Oxi-
dations with hydrogen peroxide catalyzed by the [WZnMn(II)2(ZnW9O34)2]122
polyoxometalate. Tetrahedron 1996, 52 (26), 8781–8788; (f) Majetich, G.;
Hicks, R.; Sun, G.; McGill, P. Carbodiimide-promoted olefin epoxidation with
aqueous hydrogen peroxide. J. Org. Chem. 1998, 63 (8), 2564–2573;
(g) Gonsalves, A. M. A. R.; Johnstone, R. A.W.; Pereira, M. M. Dissociation of
hydrogen peroxide adducts in solution: The use of such adducts for epoxidation
of alkenes. J. Chem. Res., Synop. 1991, 8, 208–209.
9. Sato, T.; Murayama, E. Unsensitized photooxidation of (þ)-limonene, 1,2-
dimethylcyclohexene, and endo-dicyclopentadiene. Bull. Chem. Soc. Jpn. 1974,
47 (3), 715–719.
10. (a) Chen, X. J.; Archelas, A.; Furstoss, R. Microbiological transformations. 27. The
first examples for preparative-scale enantioselective or diastereoselective epoxide
hydrolyses using microorganisms. An unequivocal access to all four bisabolol
stereoisomers. J. Org. Chem. 1993, 58 (20), 5528–5532; (b) Van der
Werf, M. J.; Keijzer, P. M.; van der Schaft, P. H. Xanthobacter sp. C20 contains
a novel bioconversion pathway for limonene. J. Biotechnol. 2000, 84 (2), 133–143.
11. (a) Farges, G.; Kergomard, A. Preparation of 8,9-epoxy-1-p-menthene (mixture of
two diastereoisomers). Bull. Soc. Chim. Fr. 1969, 12, 4476–4477; (b) Payne, G. B.
A simplified procedure for epoxidation by benzonitrile–hydrogen peroxide.
Selective oxidation of 2-allylcyclohexanone. Tetrahedron 1962, 18 (6),
763–765; (c) Ogata, Y.; Sawaki, Y. The alkali phosphate-catalyzed epoxidation
and oxidation by a mixture of nitrile and hydrogen peroxide. Tetrahedron 1964,
20 (9), 2065–2068; (d) Bain, J. P.; Gary, W. Y.; Klein, E. A. Oxygenated