T. C. Higgs, C. J. Carrano
S. K. Chapman, Perspect. Bioinorg. Chem. 1991, 1, 95.
A. G. Sykes, Adv. Inorg. Chem. 1991, 36, 377.
U. Ryde, M. H. M. Olsson, K. Pierloot, Theor. Comput. Chem.
2001, 9, 1.
A. Messerschmidt, Struct. Bonding (Berlin) 1998, 90, 37.
R. Burth, A. Stange, M. Schafer, H. Vahrenkamp, Eur. J. Inorg.
Chem. 1998, 1759.
A. Trosch, H. Vahrenkamp, Eur. J. Inorg. Chem. 1998, 827.
A. Abufarag, H. Vahrenkamp, Inorg. Chem. 1995, 34, 3279.
U. Brand, H. Vahrenkamp, Inorg. Chem. 1995, 34, 3285.
A. Abufarag, H. Vahrenkamp, Inorg. Chem. 1995, 34, 2207.
P. Ghosh, G. Parkin, J. Chem. Soc. Dalton Trans. 1998, 2281.
P. Ghosh, G. Parkin, Chem. Commun. 1998, 413.
C. Kimblin, T. Hascall, G. Parkin, Inorg. Chem. 1997, 36, 5680.
S. J. Chiou, P. H. Ge, C. G. Riordan, L. M. Liable-Sands, A.
L. Rheingold, J. Inorg. Biochem. 1999, 74, 98.
S. J. Chiou, P. H. Ge, C. G. Riordan, L. M. Liable-Sands, A.
L. Rheingold, Chem. Commun. 1999, 159.
C. O. R. deBarbarin, N. A. Bailey, D. E. Fenton, Q. Y. He, J.
Chem. Soc. Dalton Trans. 1997, 161.
B. S. Hammes, C. J. Carrano, Inorg. Chim. Acta 2000, 300, 427.
B. S. Hammes, C. J. Carrano, J. Inorg. Biochem. 1999, 74, 154.
B. S. Hammes, C. J. Carrano, Inorg. Chem. 1999, 38, 4593.
C. R. Warthen, B. S. Hammes, C. J. Carrano, D. C. Crans, J.
Biol. Inorg. Chem. 2001, 6, 82.
FULL PAPER
[13]
[14]
[15]
absorption corrections were applied since examination of the ψ
scan data collected for each crystal indicated little anisotropic radi-
ation absorption. The SHELXTL version 5[84] software package
was used to solve all three structures by direct methods and sub-
sequently refine them. A summary of cell parameters, data collec-
tion conditions, transmission factors, and refinement results can be
found in Table 5. Details pertinent to the individual refinements
are outlined below. The structure of 3 was solved by direct methods,
the asymmetric unit containing a single complete molecule of 3. All
non-hydrogen atoms were refined isotropically and subsequently
anisotropically. All hydrogen atoms were included in calculated po-
sitions except for H1B, which is attached to O1 and hydrogen-bon-
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
˚
ded to N2 [O1···N2; 2.64(1) A], which was located on the E-map
by difference Fourier synthesis. The structure of 4 was also solved
by direct methods, with once again a single complete molecule
within the asymmetric unit. The non-hydrogen atoms were first re-
fined isotropically whereupon disorder over two positions was ob-
served in the tert-butyl group (C15, C16, C17, C18) of the C7ϪC12
phenyl ring. The tert-butyl methyl groups (C16, C17, and C18) had
their occupancies tied to their disordered counterparts (C16Ј, C17Ј,
and C18Ј) to give a total of 1.0 for each pair, then these were refined
to give respective occupancy values of 0.68 and 0.32. All the non-
hydrogen atoms were then refined anisotropically. Hydrogen atoms
were included in calculated positions (including the disordered tert-
butyl group, the H occupancies corresponding to those of the C
atom to which they were bonded) using a riding model and fixed
isotropic thermal parameters. The structure of 5 was solved by dir-
ect methods with one complete molecule being contained within
the asymmetric unit. All non-hydrogen atoms were refined with
anisotropic thermal parameters and the hydrogen atoms sub-
sequently included in the refinement in calculated positions using
a riding model with fixed isotropic thermal parameters. CCDC-
187103 (3), -187104 (4) and -187105 (5) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from
the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK [Fax: (internat.) ϩ 44-1223/336-033;
E-mail: deposit@ccdc.cam.ac.uk].
[26]
[27]
[28]
[29]
[30]
[31]
[32]
K. E. Hightower, C. A. Fierke, Curr. Opin. Chem. Biol. 1999,
3, 176.
R. G. Matthews, J. T. Drummond, Chem. Rev. 1990, 90, 1275.
W. B. Tolman, D. J. E. Spencer, Curr. Opin. Chem. Biol. 2001,
5, 188.
[33]
[34]
[35]
[36]
E. I. Solomon, M. J. Baldwin, M. D. Lowery, Chem. Rev. 1992,
92, 521.
E. I. Solomon, K. W. Penfield, A. A. Gewirth, M. D. Lowery,
S. E. Shadle, J. A. Guckert, L. B. LaCroix, Inorg. Chim. Acta
1996, 243, 67.
H. Thomann, M. Bernardo, M. J. Baldwin, M. D. Lowery, E.
I. Solomon, J. Am. Chem. Soc. 1991, 113, 5911.
R. K. Szilagyi, E. I. Solomon, Curr. Opin. Chem. Biol. 2002,
6, 250.
A. Romero, C. W. G. Hoitink, H. Nar, R. Huber, A. Messersch-
midt, G. W. Canters, J. Mol. Biol. 1993, 229, 1007.
D. W. Randall, D. R. Gamelin, L. B. LaCroix, E. I. Solomon,
J. Biol. Inorg. Chem. 2000, 5, 16.
K. Pierloot, J. O. A. De Kerpel, U. Ryde, M. H. M. Olsson, B.
O. Roos, J. Am. Chem. Soc. 1998, 120, 13156.
A. E. Palmer, D. W. Randall, F. Xu, E. I. Solomon, J. Am.
Chem. Soc. 1999, 121, 7138.
C. Buning, G. W. Canters, P. Comba, C. Dennison, L. Jeuken,
M. Melter, J. Sanders-Loehr, J. Am. Chem. Soc. 2000, 122, 204.
B. G. Malmstrom, Oxidases and Related Redox Systems, vol 1
(Eds.: T. E. King, H. S. Mason, M. Morrison), Wiley, New
York, 1964, p. 207.
B. G. Malmstrom, P. Wittung-Stafshede, Coord. Chem. Rev.
1999, 186, 127.
J. R. Winkler, P. WittungStafshede, J. Leckner, B. G.
Malmstrom, H. B. Gray, Proc. Natl. Acad. Sci. U. S. A. 1997,
94, 4246.
S. DeBeer, P. Wittung-Stafshede, J. Leckner, G. Karlsson, J.
R. Winkler, H. B. Gray, B. G. Malmstrom, E. I. Solomon, B.
Hedman, K. O. Hodgson, Inorg. Chim. Acta 2000, 297, 278.
P. Wittung-Stafshede, M. G. Hill, E. Gomez, A. J. Di Bilio,
B. G. Karlsson, J. Leckner, J. R. Winkler, H. B. Gray, B. G.
Malmstrom, J. Biol. Inorg. Chem. 1998, 3, 367.
U. Ryde, M. H. M. Olsson, K. Pierloot, B. O. Roos, J. Mol.
Biol. 1996, 261, 586.
U. Ryde, M. H. M. Olsson, B. O. Roos, J. O. A. De Kerpel, K.
Pierloot, J. Biol. Inorg. Chem. 2000, 5, 565.
L. B. LaCroix, S. E. Shadle, Y. N. Wang, B. A. Averill, B. Hed-
man, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 1996,
118, 7755.
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
Acknowledgments
This work was supported by Grants AI-1157 from the Robert A.
Welch Foundation, the ACF/PRF, and Grant SF-93Ϫ12 from the
Dreyfus foundation. NSF Program Grants USE-9151286 and
CHE-9601574 are gratefully acknowledged for partial support of
the X-ray diffraction and NMR facilities, respectively, at Southwest
Texas State University. We would also like to thank Dr. Hamish
McNabb for a valuable discussion on the presentation of this work.
[45]
[46]
[1]
B. L. Vallee, D. S. Auld, Acc. Chem. Res. 1993, 26, 543.
B. L. Vallee, D. S. Auld, Matrix Metalloproteinases Inhib., Proc.
[2]
Matrix Metalloproteinase Conf. 1992, 5.
[47]
[48]
[3]
M. C. Feiters, Comments Inorg. Chem. 1990, 11, 131.
[4]
D. W. Christianson, Adv. Protein Chem. 1991, 42, 281.
[5]
J. M. Berg, Curr. Opin. Struct. Biol. 1993, 3, 11.
[6]
D. S. Auld, BioMetals 2001, 14, 271.
[7]
E. T. Adman, Adv. Protein Chem. 1991, 42, 145.
[8]
H. B. Gray, B. G. Malmstrom, R. J. P. Williams, J. Biol. Inorg.
[49]
[50]
[51]
Chem. 2000, 5, 551.
H. B. Gray, E. I. Solomon, Copper Proteins (Ed.: T. G. Spiro),
[9]
Wiley-Interscience, New York, 1981, p. 1.
K. W. Penfield, A. A. Gewirth, E. I. Solomon, J. Am. Chem.
[10]
Soc. 1985, 107, 4519.
[11]
A. Vlcek, Jr., Chemtracts 1997, 10, 913.
[12]
O. Farver, Protein Electron Transfer 1996, 161.
3644
Eur. J. Org. Chem. 2002, 3632Ϫ3645