A R T I C L E S
Navarre et al.
Table 1. Phenols as Protonating Agentsa
withdrawing group.10,11 We also shown that potassium organ-
otrifluoroborates participated efficiently in this reaction,12 with
their advantageous stability and ease of preparation compared
to other boron derivatives.13 In such reactions, it is postulated,
and some intermediates have identified, that the mechanistic
cycle involves the generation of an oxa-π-allylmetal intermedi-
ate.14 Thus, one could easily imagine control of the prochiral R
center of an R,R′-disubstituted alkene via a diastereoselective
protonation of the putative rhodium-enolate, leading to an overall
tandem 1,4-addition/enantioselective protonation.15,16
Other groups reported such an approach using water as a
protonating agent, but enantiomeric excesses were limited to
70%. Indeed, Reetz et al.17 were the first to show that, in the
presence of an atropoisomeric binol-based diphosphonite chiral
ligand, the rhodium-catalyzed 1,4-addition of phenylboronic acid
to dehydroamino ester afforded R-amino ester in a modest 77%
ee. Frost et al.18 also described the use of a hindered chiral ligand
in the same reaction, as well as binap ligand in the preparation
of 2-substituted succinic esters,19 but the ee values were still
limited to 72%.
phenol
yield
eec
phenol
yield
eec
C6H5
2-MeC6H4
2-t-BuC6H4
2,6-(t-Bu)2C6H3
2-PhC6H4
81
63
28
63
77
90
88
51
42
0
18
2-MeOC6H4
2-i-PrOC6H4
2-HOC6H4
3-MeOC6H4
4-MeOC6H4
2-MeO-6-IC6H3
2-FC6H4
91
91
4
84
75
0
65
45
0
85
76
72
80
73
83
63
7
51
45
37
44
54
69
8
-8
-20
14
4-ClC6H4
2,4-Cl2C6H3
2,4,6-Cl3C6H2
4-CNC6H4
2-CNC6H4
2-NO2C6H4
2-(AcNH)C6H4
2-(PhCONH)C6H4 18
2-(MeOCO)C6H4
2-(MeCO)C6H4
30
-4
2-CF3C6H4
2-MeSC6H4
3-(MeCO)C6H4
3,5-(MeO)2C6H3
3,4,5-(MeO)3C6H2
P1d
45
57
59
61
62
23b nd
23
3
18
26
16
36
32
P2d
a Reactions conducted using 0.5 mmol of 1a, 2 equiv of 2a, and 1
equiv of phenol with 3 mol% of [Rh(cod)2][PF6], 3.3 mol% of (S)-binap
in toluene at 110–115 °C for 20 h. b Conversion determined by GC.
c Sign plus for the (R) enantiomer. d P1 ) benzo[1,3]dioxol-5-ol and P2
) 7-methoxy-naphthalen-2-ol.
From these results, it appeared that water was not the most
suitable protonating agent. On the contrary, when using other
proton sources such as phenol derivatives, we showed that high
ee values were achieved in the 1,4-addition of organometallics
to dehydroamino esters.8a This concept of 1,4-addition/enanti-
oselective protonation of rhodium enolate using other proton
sources than water was applied to the synthesis of ꢀ2-amino
acids using phthalimide as a protonating agent20 and R,R′-
dibenzyl esters using boric acid.21
We want to report here the scope and limitation of the
rhodium-catalyzed 1,4-addition/enantioselective protonation of
organometallic reagents to dehydroamino esters allowing direct
preparation of R-amino acid derivatives in high yields and
enantiomeric excesses. Moreover, mechanistic studies revealed
a totally unusual reaction mechanism, explaining the efficient
stereocontrol of the R chiral center on such substrates and
resulting in further improvements in the efficiency of the
process.
Catalytic System Optimization. We initially tested the fea-
sibility of the asymmetric 1,4-addition to dehydroamino esters
using methyl N-acetylaminoacrylate (1a) and potassium phe-
nyltrifluoroborate (2a) as model substrates (eq 1). Despite
numerous attempts, we never succeeded in achieving stereose-
lective control of the R center on protonation with water in the
presence of various chiral ligands complexed on a rhodium
catalyst. Whatever the chiral ligand tested, enantioselectivities
were generally lower than 30% and the results were not always
reproducible.22
(10) (a) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16,
4229. Reviews: (b) Hayashi, T. Synlett 2001, 879. (c) Hayashi, T.;
Yamasaki, K. Chem. ReV. 2003, 103, 2829. (d) Hayashi, T. Bull. Chem.
Soc. Jpn. 2004, 77, 13. (e) Hayashi, T. Pure Appl. Chem. 2004, 76,
465.
(11) (a) Itooka, R.; Iguchi, Y.; Miyaura, N. J. Org. Chem. 2003, 68, 6000.
(b) Hayashi, T.; Ueyama, K.; Tokugana, N.; Yoshida, K. J. Am. Chem.
Soc. 2003, 125, 11508. (c) Ma, Y.; Song, C.; Ma, C.; Sun, Z.; Chai,
Q.; Andrus, M. B. Angew. Chem., Int. Ed. 2003, 42, 5871. (d) Defieber,
C.; Paquin, J.-F.; Serna, S.; Carreira, E. M. Org. Lett. 2004, 6, 3873.
(e) Bocknack, B. M.; Wang, L.-C.; Krische, M. J. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5421. (f) Shintani, R.; Tsurusaki, A.; Okamoto,
K.; Hayashi, T. Angew. Chem., Int. Ed. 2005, 44, 3909. (g) Duan,
W.-L.; Imazaki, Y.; Shintani, R.; Hayashi, T. Tetrahedron 2007, 63,
8529. (h) Shintani, R.; Ichikawa, Y.; Hayashi, T.; Chen, J.; Nakao,
Y.; Hiyama, T. Org. Lett. 2007, 9, 4643. (i) Helbig, S.; Sauer, S.;
Cramer, N.; Laschat, S.; Baro, A.; Frey, W. AdV. Synth. Catal. 2007,
349, 2331. (j) Tokunaga, N.; Hayashi, T. AdV. Synth. Catal. 2007,
349, 513.
(12) (a) Pucheault, M.; Darses, S.; Genet, J.-P. Tetrahedron Lett. 2002,
43, 6155. (b) Pucheault, M.; Darses, S.; Genet, J.-P. Eur. J. Org. Chem.
2002, 3552. (c) Pucheault, M.; Michaud, V.; Darses, S.; Genet, J.-P.
Tetrahedron Lett. 2004, 45, 4729. (d) Navarre, L.; Darses, S.; Genet,
J.-P. Chem. Commun. 2004, 1108. (e) Pucheault, M.; Darses, S.; Genet,
J.-P. J. Am. Chem. Soc. 2004, 126, 15356. (f) Navarre, L.; Pucheault,
M.; Darses, S.; Genet, J.-P. Tetrahedron Lett. 2005, 46, 4247. (g)
Navarre, L.; Darses, S.; Genet, J.-P. AdV. Synth. Catal. 2006, 348,
317. (h) Martinez, R.; Voica, F.; Genet, J.-P.; Darses, S. Org. Lett.
2007, 9, 3213.
(13) For reviews on potassium trifluoro(organo)borates chemistry, see: (a)
Darses, S.; Genet, J.-P. Eur. J. Org. Chem. 2003, 4313. (b) Molander,
G. A.; Figueroa, R. Aldrichimica Acta 2005, 38, 49. (c) Molander,
G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275. (d) Stefani, H. A.;
Cella, R.; Vieira, A. S. Tetrahedron 2007, 63, 3623. (e) Darses, S.;
Genet, J.-P. Chem. ReV. 2008, 108, 288.
(14) Such complexes have been shown to be intermediates in rhodium-
catalyzed 1,4-additons of organometallic reagent (particularly orga-
noboronic acids) to enones; see ref 9.
(15) For a first example of enantioselective protonation of a rhodium enolate
intermediate (18% ee), see: Bergens, S. H.; Bosnich, B. J. Am. Chem.
Soc. 1991, 113, 958.
(16) (a) For enantioselective protonation of enolates see: Duhamel, L.;
Plaquevent, J.-C J. Am. Chem. Soc. 1978, 100, 7415. Reviews: (b)
Duhamel, L.; Duhamel, P.; Launay, J.-C.; Plaquevent, J.-C. Bull. Soc.
Chim. Fr. 1984, 421. (c) Fehr, C. Angew. Chem., Int. Ed. Engl. 1996,
36, 2566. (d) Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett
1997, 411. (e) Eames, J.; Weerasooriya, N. Tetrahedron: Asymmetry
2001, 12, 1. (f) Duhamel, L.; Duhamel, P.; Plaquevent, J.-C.
Tetrahedron: Asymmetry 2004, 15, 3653.
Then, we turned out our attention to the proton source. Among
the various tested proton sources, we were pleased to find that
phenols were particularly suited. For example, using phenol,
an 81% yield of 3aa was obtained in 18% ee (Table 1). In order
(17) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083.
(18) Chapman, C. J.; Wadsworth, K. J.; Frost, C. G. J. Organomet. Chem.
2003, 680, 206.
(20) Sibi, M. P.; Tatamidani, H.; Patil, K. Org. Lett. 2005, 7, 2571.
(21) Frost, C. G.; Penrose, S. D.; Lambshead, K.; Raithby, P. R.; Warren,
J. E.; Gleave, R. Org. Lett. 2007, 9, 2119.
(19) Moss, R. J.; Wadsworth, K. J.; Chapman, C. J.; Frost, C. G. Chem.
Commun. 2004, 1984.
(22) See supporting information for some examples of the use of chiral
ligands using water as a proton source.
9
6160 J. AM. CHEM. SOC. VOL. 130, NO. 19, 2008