Charge-Transfer Interactions in Substituted 1,1-Diphenylethenes
FULL PAPER
[18]
[19]
[20]
[21]
C. Bosshard, R. Spreiter, P. Günter, R. R. Tykwinski, M.
Schreiber, F. Diederich, Adv. Mater. 1996, 8, 231Ϫ234.
R. R. Tykwinski, M. Schreiber, V. Gramlich, P. Seiler, F. Died-
erich, Adv. Mater. 1996, 8, 226Ϫ231.
ether. A solution of 4-bromoacetophenone (5.01 g, 25.2 mmol) in
diethyl ether (20 mL) was added dropwise. Subsequently, the mix-
ture was heated at reflux temperature for three hours. After the
mixture had cooled, water (100 mL) and hydrochloric acid (1 ,
25 mL) were added cautiously, after which the layers were sepa-
rated. The organic one was washed with water (3 ϫ 50 mL), dried
over magnesium sulfate and filtered, and the solvents were evapo-
rated to dryness to give 9 (6.93 g, 5.0 mmol, 99%). Ethene 10 was
then prepared from 9 by the method described for 6. Yield 82% of
´
C. Eckert, F. Heisel, J. A. Miehe, R. Lapouyade, L. Ducasse,
Chem. Phys. Lett. 1988, 153, 357Ϫ364.
´ ˆ
C. Maertens, C. Detrembleur, P. Dubois, R. Jerome, C. Bout-
´
ton, A. Persoons, T. Kogej, J. L. Bredas, Chem. Eur. J. 1999,
5, 369Ϫ380.
[22]
[23]
[24]
[25]
[26]
M. H. van der Veen, M. T. Rispens, H. T. Jonkman, J. C. Hum-
melen, Adv. Funct. Mater. 2004, 14, 215Ϫ223.
M. Klokkenburg, M. Lutz, A. L. Spek, J. H. van der Maas, C.
A. van Walree, Chem. Eur. J. 2003, 9, 3544Ϫ3554.
N. J. Turro, Modern Molecular Photochemistry, Benjamin/
Cummings, Menlo Park, 1978.
A. Gilbert, J. Baggot, Essentials of Molecular Photochemistry,
Blackwell, Oxford, 1991.
D. R. Arnold, X. Du, J. Chen, Can. J. Chem. 1995, 73,
307Ϫ318.
2
a yellow liquid. 1H NMR: δ ϭ 5.45 and 5.47 (AB, JH,H ϭ 1.2 Hz,
3
2 ϫ 1 H, ϭCH2), 7.21 and 7.46 (AAЈBBЈ, JH,H ϭ 8.5 Hz, 2 ϫ 2
H, ArϪH), 7.35 (m, 5 H, ArϪH) ppm. 13C NMR: δ ϭ 114.7, 121.8,
127.9, 128.2, 128.3, 129.9, 131.3, 140.4, 140.9, 149.0 ppm. IR:
ν˜max ϭ 1661, 1588, 1485, 903, 1072, 1011, 831, 777 cmϪ1
.
1-(4-Cyanophenyl)-1-phenylethene (1A): This compound was pre-
pared from 10 by the method described for 1D1A. The crude prod-
uct was purified by crystallization from methanol at Ϫ20 °C, col-
umn chromatography with chloroform as eluent and another crys-
tallization from methanol at Ϫ20 °C. Yield 64% of white crystals.
[27]
[28]
L. Friedman, H. Shechter, J. Org. Chem. 1961, 26, 2522Ϫ2524.
ZINDO calculations were also performed, but the PPP/SCF
results were found to be much more consistent with the exper-
imentally measured data. In particular, ZINDO results for di-
methylaniline derivatives were poor. This has been reported
previously: J.-S. Yang, S.-Y. Chiou, K.-L. Liau, J. Am. Chem.
Soc. 2002, 124, 2518Ϫ2527.
1
2
M.p. 42 °C. H NMR: δ ϭ 5.54 and 5.58 (AB, JH,H ϭ 0.8 Hz, 2
ϫ 1 H, ϭCH2), 7.26 (m, 2 H, ArϪH), 7.35 (m, 3 H, ArϪH), 7.42
and 7.62 (AAЈBBЈ, 3JH,H ϭ 8.5 Hz, 2 ϫ 2 H, ArϪH) ppm, in agree-
ment with literature data.[26] 13C NMR: δ ϭ 111.3, 116.6, 118.8,
128.1, 128.2, 128.4, 128.8, 132.0, 140.2, 146.0, 148.7 ppm, in agree-
ment with literature data.[26] IR: ν˜max ϭ 2226, 1605, 1502, 1491,
[29]
[30]
´
H. H. Jaffe, M. Orchin, Theory and Applications of Ultraviolet
Spectroscopy, Wiley, New York, 1962.
The PPP calculated data of ST-A and 1A do not reflect the
experimental trends very accurately. This may be related to
planarity effects.
912, 853, 783, 706 cmϪ1
.
Supporting Information: Fluorescence spectra of 1D2 in different
solvents (see also the footnote on the first page of this article).
[31]
[32]
C. A. van Walree, O. Franssen, A. W. Marsman, M. C. Flipse,
L. W. Jenneskens, J. Chem. Soc., Perkin Trans. 2 1997,
799Ϫ807.
It would be expected that when the acceptor 1La state is higher
in energy than calculated for 1A, relatively more intensity
[1]
P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical
1
would be taken from the donor La transition. In addition, the
Effects in Molecules and Polymers, Wiley, New York, 1991.
small energy difference between the 1La state of 1A and the CT
state of 1D1A may account for the large calculated intensity of
the CT transition. The efficiency of intensity stealing depends
on this difference.
[2]
Chem. Rev. 1994, 94, 3Ϫ278.
[3]
R. M. Metzger, J. Mater. Chem. 1999, 9, 2027Ϫ2036.
[4]
R. M. Metzger, Chem. Rev. 2003, 103, 3803Ϫ3834.
[5]
A. Nitzan, M. A. Ratner, Science 2003, 300, 1384Ϫ1389.
[33]
[34]
R. Lapouyade, K. Czeschka, W. Majenz, W. Rettig, E. Gilab-
[6]
H. Imahori, S. Fukuzumi, Adv. Mater. 2001, 13, 1197Ϫ1199.
`
ert, C. Rulliere, J. Phys. Chem. 1992, 96, 9643Ϫ9650.
[7]
P. Pasman, F. Rob, J. W. Verhoeven, J. Am. Chem. Soc. 1982,
M. Brink, H. Möllerstedt, C.-H. Ottosson, J. Phys. Chem. A
2001, 105, 4071Ϫ4083.
W. Rettig, Top. Curr. Chem. 1994, 169, 253Ϫ299.
H. Beens, H. Knibbe, A. Weller, J. Chem. Phys. 1967, 47,
1183Ϫ1184.
Dielectric constants and refractive indices of solvents were
taken from: C. Reichardt, Solvents and Solvent Effects in Or-
ganic Chemistry, 2nd edition, VCH, Weinheim, 1988.
W. Rettig, Angew. Chem. 1986, 98, 969Ϫ986; Angew. Chem. Int.
Ed. Engl. 1986, 25, 971.
104, 5127Ϫ5133.
[8]
M. N. Paddon-Row, Acc. Chem. Res. 1994, 27, 18Ϫ25.
W. D. Oosterbaan, P. C. M. van Gerven, C. A. van Walree, M.
[35]
[36]
[9]
Koeberg, J. J. Piet, R. W. A. Havenith, J. W. Zwikker, L. W.
Jenneskens, R. Gleiter, Eur. J. Org. Chem. 2003, 3117Ϫ3130.
G. Mignani, A. Krämer, G. Pucetti, I. Ledoux, J. Zyss, G.
[37]
[10]
Soula, Organometallics 1991, 10, 3656Ϫ3659.
F. J. Hoogesteger, C. A. van Walree, L. W. Jenneskens, M. R.
[11]
[38]
[39]
Roest, J. W. Verhoeven, W. Schuddeboom, J. J. Piet, J. M. War-
man, Chem. Eur. J. 2000, 6, 2948Ϫ2959.
W. D. Oosterbaan, C. Koper, T. W. Braam, F. J. Hoogesteger,
[12]
K. A. Zachariasse, M. Grobys, T. von der Haar, A. Hebecker,
Y. V. I l Јichev, Y.-B. Jiang, O. Morawski, W. Kühnle, J. Photo-
chem. Photobiol. A: Chem. 1996, 102, 59Ϫ70.
K. A. Zachariasse, Chem. Phys. Lett. 2000, 320, 8Ϫ13.
J. J. Piet, B. A. J. Jansen, C. A. van Walree, H. J. van Rames-
donk, M. Goes, J. W. Verhoeven, W. Schuddeboom, J. M. War-
[40]
[41]
man, L. W. Jenneskens, J. Phys. Chem.
3612Ϫ3624.
P. Maslak, A. Chopra, C. R. Moylan, R. Wortmann, S. Lebus,
A. L. Rheingold, G. P. A. Yap, J. Am. Chem. Soc. 1996, 118,
1471Ϫ1481.
C. A. van Walree, H. Kooijman, A. L. Spek, J. W. Zwikker, L.
W. Jenneskens, J. Chem. Soc., Chem. Commun. 1995, 35Ϫ36.
C. A. van Walree, M. R. Roest, W. Schuddeboom, L. W. Jenne-
skens, J. W. Verhoeven, J. M. Warman, H. Kooijman, A. L.
Spek, J. Am. Chem. Soc. 1996, 118, 8395Ϫ8407.
A 2003, 107,
´
J. Dobkowski, J. Wojcik, W. Kozminski, R. Kolos, J. Waluk, J.
[13]
Michl, J. Am. Chem. Soc. 2002, 2406Ϫ2407.
[42]
Cavity radii were estimated by comparison with the previously
used radius of 2-[4-(dimethylamino)phenyl]-2-(4-cyanophenyl)-
propane (4.5 A, ref.[15]).
˚
[14]
[15]
[43]
[44]
[45]
R. A. Neunteufel, D. R. Arnold, J. Am. Chem. Soc. 1973, 95,
4080Ϫ4081.
´
J. F. Letard, R. Lapouyade, W. Rettig, J. Am. Chem. Soc. 1993,
115, 2441Ϫ2447.
[16]
[17]
´
´
´
The fluorescence maximum in ethanol was omitted from the
fit, since hydrogen bonding interactions cause the fluorescence
to deviate from the behaviour predicted by Equation (2).
J. W. Verhoeven, T. Scherer, B. Wegewijs, R. M. Hermant, J.
A. Garcıa Martınez, J. Osıo Barcina, A. de Fresno Cerezo, G.
´
´
Rojo, F. Agullo-Lopez, J. Phys. Chem. B 2000, 104, 43Ϫ47.
R. R. Tykwinski, M. Schreiber, R. Perez Carlon, F. Diederich,
´
´
[46]
V. Gramlich, Helv. Chim. Acta 1996, 79, 2249Ϫ2281.
Eur. J. Org. Chem. 2004, 3046Ϫ3056
2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3055