ORGANIC
LETTERS
2004
Vol. 6, No. 11
1709-1712
Efficient Synthesis of
Poly(phenylazomethine) Dendrons
Allowing Access to Higher Generation
Dendrimers
Kensaku Takanashi, Hiroshi Chiba, Masayoshi Higuchi, and Kimihisa Yamamoto*
Department of Chemistry, Faculty of Science & Technology, Keio UniVersity,
Yokohama 223-8522, Japan
Received February 26, 2004
ABSTRACT
We have developed a novel synthetic method of phenylazomethine dendrons that uses 4,4′-methylenedianiline instead of 4,4′-
diaminobenzophenone to synthesize the precursor of the phenylazomethine dendron and then oxidized the precursor to the next-generation
dendron. For this method, the productivity of the dendrons has been significantly increased. Furthermore, as the synthesis of high-generation
dendrons becomes easier, synthesis of DPA G5 was achieved.
Dendritic polyphenylazomethines (DPAs)1,2 containing a Cd
N-conjugated backbone have a conformational rigidity, and
their imine sites can trap metal ions. Particularly, the imines
on DPA show a stepwise radial complexation with SnCl2
from the core imines to the terminal imines based on the
gradients in the basicity of the imine groups, which can be
controlled by substituents on the core phenyl.3 Due to these
unique properties, DPAs are expected to be used as novel
nanomaterials such as charge accumulation devices, photo-
voltaic devices, and environmental catalysts.4,5 We revealed
that DPA with a cobalt-porphyrin core acts an efficient
catalyst for reduction of CO2,6 and organic light-emitting
(3) (a) Yamamoto, K.; Higuchi, M.; Shiki, S.; Tsuruta, M.; Chiba, H.
Nature 2002, 415, 509. (b) Enoki, O.; Imaoka, T.; Yamamoto, K. Org.
Lett. 2003, 5, 2547.
(4) For devices using dendrimers, see: (a) Freeman, A. W.; Koene, S.
C.; Malenfant, P. R. L.; Thompson, M. E.; Fre´chet, J. M. J. J. Am. Chem.
Soc. 2000, 122, 12385. (b) Hecht S.; Fre´chet J. M. J. Angew. Chem., Int.
Ed. 2001, 40, 74. (c) Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann,
V.; Mu¨llen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem.
Soc. 2001, 123, 946.
(5) For catalysts using dendrimers, see: (a) Astruc, D.; Chardac, F. Chem.
ReV. 2001, 101, 2991. (b) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.;
Yeung, L. K. Acc. Chem. Res. 2001, 34, 181. (c) van Heerbeek, R.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. ReV. 2002, 102,
3717.
(6) Imaoka, T.; Horiguchi, H.; Yamamoto, K. J. Am. Chem. Soc. 2003,
125, 340.
(1) For reviews of dendrimers, see: (a) Zeng, F.; Zimmerman, S. C.
Chem. ReV. 1997, 97, 1681. (b) Bosman, A. W.; Janssen, H. M.; Meijer, E.
W. Chem. ReV. 1999, 99, 1665. (c) Fischer, M.; Vo¨gtle, F. Angew. Chem.,
Int. Ed. 1999, 38, 884. (d) Grayson, S. M.; Fre´chet, J. M. J. Chem. ReV.
2001, 101, 3819. (e) Newkome, G. R.; Moorefield, C. N.; Vo¨gtle, F.
Dendrimers and Dendrons: Concepts, Syntheses, Applications; VCH:
Weinheim, Germany, 2001. (f) Fre´chet, J. M. J.; Tomalia, D. A. Dendrimers
and Other Dendritic Polymers; Wiley: Chichester, UK, 2002.
(2) Higuchi, M.; Shiki, S.; Ariga, K.; Yamamoto, K. J. Am. Chem. Soc.
2001, 123, 4414.
10.1021/ol049656d CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/27/2004