Communications
the different contributions of the bromide and iodide anions
to the stabilization of B. Besides this speculation, more work
should be performed to prove this mechanism further or other
possible mechanisms should be put forward.
In summary, we have found that the NHCOR group has a
strong ortho-substituent effect on an Ullmann-type biaryl
ether formation reaction. This ortho-substituent effect is the
third type discovered to date, which should facilitate the
development of more mild Ullmann-type coupling reac-
tions.[10] In addition, although the substrates tested so far are
limited, our new reaction is rather mild and fast relative to the
previous CuI-catalyzed coupling reactions of aryl halides with
phenols,[11] and therefore should find further applications in
organic synthesis.
Received: October 6, 2005
Revised: November 27, 2005
Published online: January 20, 2006
Keywords: biaryl ethers · coupling · ligand effects · ortho effect ·
.
peptides
Scheme 1. Synthesis of K-13. Reagents and conditions: a) Pd/C/H2,
[1] For reviews, see: a)K. C. Nicolaou, C. N. C. Boddy, S. Bräse, N.
Winssinger, Angew. Chem. 1999, 111, 2230 – 2287; Angew. Chem.
Int. Ed. 1999, 38, 2096 – 2152; b)J. Zhu, Synlett 1997, 133 – 144;
c)A. V. R. Rao, M. K. Gurjar, G. K. L. Reddy, A. S. Rao, Chem.
Rev. 1995, 95, 2135 – 2167; d)J. Blankenstein, J. Zhu, Eur. J. Org.
Chem. 2005, 1949 – 1964.
MeOH, RT; b) NBS, DMF, RT; c) (CF3CO)2O, CH2Cl2; d) TFA, CH2Cl2;
e) aq. LiOH, THF, MeOH; f) HATU/DIPEA, DMF; g) Cs2CO3, CuI,
N,N-dimethylglycine, 1,4-dioxane, RT; h) TFA then Ac2O/TEA; i) aq.
NaOH, MeOH; j) tBuONO/HBF4, MeCN; k) Cu(NO3)2/Cu2O.
NBS=N-bromosuccinimide, DMF=dimethylformamide, TFA=tri-
fluoroacetic acid, HATU=2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetra-
methyluronium hexafluorophosphate, DIPEA=diisopropylethylamine,
TEA=triethylamine.
[2] a)K. C. Nicolaou, C. N. C. Boddy, S. Natarajan, T.-Y. Yue, H. Li,
S. Bräse, J. M. Ramanjulu, J. Am. Chem. Soc. 1997, 119, 3421 –
3422; b)K. C. Nicolaou, S. Natarajan, H. Li, N. F. Jain, R.
Hughes, M. E. Solomon, J. M. Ramanjulu, C. N. C. Boddy, M.
Takayanagi, Angew. Chem. 1998, 110, 2872 – 2878; Angew.
Chem. Int. Ed. 1998, 37, 2708 – 2714; c)K. C. Nicolaou, N. F.
Jain, S. Natarajan, R. Hughes, M. E. Solomon, H. Li, J. M.
Ramanjulu, M. Takayanagi, A. E. Koumbis, T. Bando, Angew.
Chem. 1998, 110, 2879 – 2881; Angew. Chem. Int. Ed. 1998, 37,
2714 – 2716; d)K. C. Nicolaou, M. Takayanagi, N. F. Jain, S.
Natarajan, A. E. Koumbis, T. Bando, J. M. Ramanjulu, Angew.
Chem. 1998, 110, 2881 – 2883; Angew. Chem. Int. Ed. 1998, 37,
2717 – 2719; e)D. A. Evans, M. R. Wood, B. W. Trotter, T. I.
Richardson, J. C. Barrow, J. L. Katz, Angew. Chem. 1998, 110,
2864 – 2868; Angew. Chem. Int. Ed. 1998, 37, 2700 – 2704;
f)D. A. Evans, C. J. Dinsmore, P. S. Watson, M. R. Wood, T. I.
Richardson, B. W. Trotter, J. L. Katz, Angew. Chem. 1998, 110,
2868 – 2872; Angew. Chem. Int. Ed. 1998, 37, 2704 – 2708;
g)D. L. Boger, S. Miyazaki, S. H. Kim, J. H. Wu, O. Loiseleur,
S. L. Castle, J. Am. Chem. Soc. 1999, 121, 3226 – 3227.
Scheme 2. Synthesis of a cycloisodityrosine derivative. Reagents and
conditions: a) 1. aq. LiOH, MeOH, THF; 2. l-tyrosine methyl ester,
EDCI, HOBt, DIPEA, CH2Cl2, 90% for two steps; b) CuI (3 equiv),
Me2NCH2CO2H (4 equiv), Cs2CO3 (4 equiv), MeCN/Py (4:1), 0.01m,
458C, 42%. EDCI=1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride.
[3] B. M. Crowley, Y. Mori, C. C. McComas, D. Tang, D. L. Boger, J.
Am. Chem. Soc. 2004, 126, 4310 – 4317.
[4] a)D. A. Evans, J. L. Katz, G. S. Peterson, T. Hintermann, J. Am.
Chem. Soc. 2001, 123, 12411 – 12413; b)D. L. Boger, S. H. Kim,
S. Miyazaki, H. Strittmatter, J.-H. Wang, Y. Mori, O. Rogel, S. L.
Castle, J. J. McAtee, J. Am. Chem. Soc. 2000, 122, 7416 – 7417;
c)D. L. Boger, S. H. Kim, Y. Mori, J.-H. Wang, O. Rogel, S. L.
Castle, J. J. McAtee, J. Am. Chem. Soc. 2001, 123, 1862 – 1871.
[5] For selected references, see: a)J. W. Janetka, D. H. Rich, J. Am.
Chem. Soc. 1997, 119, 6488 – 6495; b)S. Nishiyama, Y. Suzuki, S.
Yamamura, Tetrahedron Lett. 1989, 30, 379 – 382; c)A. V. R.
Rao, T. K. Chakraborty, K. L. Reddy, A. S. Rao, Tetrahedron
Lett. 1992, 33, 4799 – 4802; d)A. Bigot, M. Bois-Choussy, J. Zhu,
Tetrahedron Lett. 2000, 41, 4573 – 4577.
Scheme 3. Plausible mechanism for mild biaryl formation.
1278
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 1276 –1279