3192 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 11
La Motta et al.
(23) Da Settimo, F.; Primofiore, G.; Da Settimo, A.; La Motta, C.; Simorini,
F.; Novellino, E.; Greco, G.; Lavecchia, A.; Boldrini, E. Novel, Highly
Potent Aldose Reductase Inhibitors: Cyano-(2-oxo-2,3-dihydroindol-
3-yl)-acetic Acid Derivatives. J. Med. Chem. 2003, 46, 1419–1428.
(24) Da Settimo, F.; Primofiore, G.; La Motta, C.; Salerno, S.; Novellino,
E.; Greco, G.; Lavecchia, A.; Laneri, S.; Boldrini, E. Spirohydantoin
Derivatives of Thiopyrano[2,3-b]pyridin-4(4H)-one as Potent in Vitro
and in Vivo Aldose Reductase Inhibitors. Bioorg. Med. Chem. 2005,
13, 491–499.
Energy Refinement of Ligand/ALR2 Complexes. Refinement
of the predicted ligand/ALR2 Complexes was achieved through
energy minimizations using the TRIPOS force field as implemented
in the SYBYL package. These geometric optimizations included
3000 steps of a steepest descent minimization, followed by 2000
steps of conjugate gradient minimization, keeping the backbone
atoms fixed and protein side chains and the ligand free to move.
(25) Da Settimo, F.; Primofiore, G.; La Motta, C.; Sartini, S.; Taliani, S.;
Simorini, F.; Marini, A. M.; Lavecchia, A.; Novellino, E.; Boldrini,
E. Naphtho[1,2-d]isothiazole Acetic Acid Derivatives as a Novel Class
of Selective Aldose Reductase Inhibitors. J. Med. Chem. 2005, 48,
6897–6907.
Supporting Information Available: Tables 1-10 including
physical, spectral, and analytical data of compounds described. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(26) La Motta, C.; Sartini, S.; Mugnaini, L.; Simorini, F.; Taliani, S.;
Salerno, S.; Marini, A. M.; Da Settimo, F.; Lavecchia, A.; Novellino,
E.; Cantore, M.; Failli, P.; Ciuffi, M. Pyrido[1,2-a]pyrimidin-4-one
Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors
Exhibiting Antioxidant Activity. J. Med. Chem. 2007, 50, 4917–4927.
(27) Zentgraf, M.; Steuber, H.; Koch, C.; La Motta, C.; Sartini, S.; Sotriffer,
C. A.; Klebe, G. How Reliable are Current Docking Approaches for
Structure-Based Drug Design. Angew. Chem., Int. Ed. 2007, 46, 3575–
3578.
(28) Steuber, H.; Zentgraf, M.; La Motta, C.; Sartini, S.; Heine, A.; Klebe,
G. Evidence for a Novel Binding Site Conformer of Aldose Reductase
in Ligand Bound State. J. Mol. Biol. 2007, 369, 186–197.
(29) Van Zandt, M. C.; Jones, M. L.; Gunn, D. E.; Geraci, L. S.; Jones,
J. H.; Sawicki, D. R.; Sredy, J.; Jacot, J. L.; Dicioccio, A. T.; Petrova,
T.; Mitschler, A.; Podjarny, A. D. Discovery of 3-[(4,5,7-trifluoroben-
zothiazol-2-yl)methyl]indole-N-acetic Acid (Lidorestat) and Congeners
as Highly Potent and Selective Inhibitors of Aldose Reductase for
Treatment of Chronic Diabetic Complications. J. Med. Chem. 2005,
48, 3141–3152.
References
(1) Kador, P. F. The Role of Aldose Reductase in the Development of
Diabetic Complications. Med. Res. ReV. 1998, 8, 325–352.
(2) Yabe-Nishimura, C. Aldose Reductase in Glucose Toxicity: a Potential
Target for the Prevention of Diabetic Complications. Pharmacol. ReV.
1998, 50, 21–33.
(3) Brownlee, M. Biochemistry and Molecular Cell Biology of Diabetic
Complications. Nature 2001, 414, 813–820.
(4) Altan, V. M. The Pharmacology of Diabetic Complications. Curr. Med.
Chem. 2003, 10, 1317–1327.
(5) Chung, S. S.; Chung, S. K. Genetic Analysis of Aldose Reductase in
Diabetic Complications. Curr. Med. Chem. 2003, 10, 1375–1387.
(6) Williamson, J. R.; Chang, K.; Frangos, M.; Hasan, K. S.; Ido, Y.;
Kawamura, T.; Nyengaard, J. R.; van der Enden, M.; Kilo, C.; Tilton,
R. G. Hyperglycemic Pseudohypoxia and Diabetic Complications.
Diabetes 1993, 42, 801–813.
(7) Ido, Y.; Williamson, J. R. Hyperglycemic Cytosolic Reductive Stress
“Pseudohypoxia”: Implications for Diabetic Retinopathy. InVest.
Ophthalmol. Vis. Sci. 1997, 38, 1467–1470.
(8) Purves, T.; Middlemas, A.; Agthon, S.; Jude, E. B.; Boulton, A. J.;
Fernyhough, P.; Tomlinson, D. R. A Role for Mitogen-Activated
Protein Kinases in the Etiology of Diabetic Neuropathy. FASEB J.
2001, 15, 2508–2514.
(9) Obrosova, I. G.; Li, F.; Abatan, O. I.; Forsell, M. A.; Komjati, K.;
Pacher, P.; Szabo, C.; Stevens, M. J. Role of Poly(ADP-ribose)poly-
merase Activation in Diabetic Neuropathy. Diabetes 2004, 53, 711–
720.
(10) Joussen, A. M.; Poulaki, V.; Le, M. L.; Koizumi, K.; Esser, C.; Janicki,
H.; Scharaermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; Kern,
T. S.; Adamis, A. P. A Central Role for Inflammation in the
Pathogenesis of Diabetic Retinopathy. FASEB J. 2004, 18, 1450–1452.
(11) Sarges, R.; Oates, P. J. Aldose Reductase Inhibitors: Recent Develop-
ments. Prog. Drug Res. 1993, 40, 99–161.
(12) Suzen, S.; Buyukbingol, E. Recent Studies of Aldose Reductase
Enzyme Inhibition for Diabetic Complications. Curr. Med. Chem.
2003, 10, 1329–1352.
(30) Kraemer, O.; Hazemann, I.; Podjarny, A. D.; Klebe, G. Virtual
Screening for Inhibitors of Human Aldose Reductase. Proteins: Struct.,
Funct., Bioinf. 2004, 55, 814–823.
(31) Steuber, H.; Heine, A.; Klebe, G. Structural and Thermodynamic Study
on Aldose Reductase: Nitro-substituted Inhibitors with Strong En-
thalpic Binding Contribution. J. Mol. Biol. 2007, 368, 618–638.
(32) Faul, M. M.; Winneroski, L. L.; York, J. S.; Reinhard, M. R.; Hoying,
R. C.; Gritton, W. H.; Dominianni, S. J. Synthesis of 2-Phenyloxazole
Derivatives Containing Amino Acids as Insulin Sensitivity Enhancers
for Treatment of Type II Diabetes. Heterocycles 2001, 55, 689–704.
(33) Ward, W. H. J.; Sennitt, C. M.; Ross, H.; Dingle, A.; Timms, D.;
Mirrlees, D. J.; Tuffin, D. P. Ponalrestat: A Potent and Specific
Inhibitor of Aldose Reductase. Biochem. Pharmacol. 1990, 39, 337–
346.
(34) Negro, T.; Murata, M.; Ueda, S.; Fujitani, B.; Ono, Y.; Kuromiya,
A.; Komiya, M.; Suzuki, K.; Matsumoto, J. Novel, Highly Potent
Aldose Reductase Inhibitors: (R)-(-)-2-(4-Bromo-2-fluorobenzyl)-
1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-4-spiro-3′-pyrrolidine-1,2′,3,5′-
tetrone (AS-3201) and its Congeners. J. Med. Chem. 1998, 41, 4118–
4129.
(35) Malamas, M. S.; Hohman, T. C.; Millen, J. Novel Spirosuccinimide
Aldose Reductase Inhibitors Derived from Isoquinoline-1,3-diones:
2-[(4-Bromo-2-fluorophenyl)methyl]-6-fluorospiro[isoquinoline-4(1H),3′-
pyrrolidine]-1,2′,3,5′(2H)-tetrone and Congeners. 1. J. Med. Chem.
1994, 37, 2043–2058.
(36) Banditelli, S.; Boldrini, E.; Vilardo, G. P.; Cecconi, I.; Cappiello, M.;
Dal Monte, M.; Marini, I.; Del Corso, A.; Mura, U. A New Approach
Against Sugar Cataract Through Aldose Reductase Inhibitors. Exp.
Eye Res. 1999, 69, 533–538.
(37) The pKa, CLogP, CLogD calculations were performed with the
chemsilico server on the web site: http: //chemsilico.com. The TPSA
calculation was performed with Marvin Sketch and Calculator Plugins
html.
(38) Kador, P. F.; Akagi, Y.; Kinoshita, J. H. The Effect of Aldose
Reductase and its Inhibition on Sugar Cataract Formation. Metabolism
1986, 35, 15–19.
(39) Urzhumtsev, A.; Tete-Favier, F.; Mitschler, A.; Barbanton, J.; Barth,
P.; Urzhumtseva, L.; Biellmann, J. F.; Podjarny, A.; Moras, D. A
“Specificity” Pocket Inferred from the Crystal Structures of the
Complexes of Aldose Reductase with the Pharmaceutically Important
Inhibitors Tolrestat and Sorbinil. Structure 1997, 5, 601–612.
(40) Steuber, H.; Zentgraf, M.; Gerlach, C.; Sotriffer, C. A.; Heine, A.;
Klebe, G. Expect the Unexpected or Caveat for Drug Designers:
Multiple Structure Determinations Using Aldose Reductase Crystals
Treated under Varying Soaking and Co-crystallisation Conditions. J.
Mol. Biol. 2006, 363, 174–187.
(13) Kawanishi, K.; Ueda, H.; Moriyasu, M. Aldose Reductase Inhibitors
from Nature. Curr. Med. Chem. 2003, 10, 1329–1352.
(14) Klebe, G.; Kraemer, O.; Sotriffer, C. Strategies for the Design of
Inhibitors of Aldose Reductase, an Enzyme Showing Pronounced
Induced Fit Adaptations. Cell. Mol. Life Sci. 2004, 61, 783–793.
(15) Dixit, B. L.; Balendiran, G. K.; Watowich, S. J.; Srivastava, S.;
Ramana, K. V.; Petrash, J. M.; Bhatnagar, A.; Srivastava, S. K. Kinetic
and Structural Characterization of the Glutathione-Binding Site of
Aldose Reductase. J. Biol. Chem. 2000, 275, 21587–21595.
(16) Ramana, K. V.; Dixit, B. L.; Srivastava, S.; Balendiran, G. K.;
Srivastava, S. K.; Bhatnagar, A. Selective Recognition of Glutathi-
olated Aldehydes by Aldose Reductase. Biochemistry 2000, 39, 12172–
12180.
(17) Srivastava, S. K.; Ramana, K. V.; Bhatnagar, A. Role of Aldose
Reductase and Oxidative Damage in Diabetes and the Consequent
Potential for Therapeutic Options. Endocr. ReV. 2005, 26, 380–392.
(18) Bohren, K. M.; Bullock, B.; Wermuth, B.; Gabbay, K. H. The Aldo-
Keto Reductase Superfamily. J. Biol. Chem. 1989, 264, 9547–9551.
(19) Jez, J. M.; Bennett, M. J.; Schlegel, B. P.; Lewis, M.; Penning, T. M.
Comparative Anatomy of the Aldo-Keto Reductase Superfamily.
Biochem. J. 1997, 326, 625–636.
(20) El-Kabbani, O.; Wilson, D. K.; Petrash, J. M.; Quiocho, F. A. Structural
Features of the Aldose Reductase and Aldehyde Reductase Inhibitor-
Binding Sites. Mol. Vis. 1998, 4, 19–25.
(21) Petrash, J. M. All in the Family: Aldose Reductase and Closely Related
Aldo-Keto Reductases. Cell. Mol. Life Sci. 2004, 61, 737–749.
(22) Da Settimo, F.; Primofiore, G.; Da Settimo, A.; La Motta, C.; Taliani,
S.; Simorini, F.; Novellino, E.; Greco, G.; Lavecchia, A.; Boldrini, E.
[1,2,4]Triazino[4,3-a]benzimidazole Acetic Acid Derivatives: A New
Series of Selective Aldose Reductase Inhibitors. J. Med. Chem. 2001,
44, 4359–4369.
(41) Howard, E. I.; Sanishvili, R.; Cachau, R. E.; Mitschler, A.; Chevrier,
B.; Barth, P.; Lamour, V.; Van Zandt, M.; Sibley, E.; Bon, C.; Moras,