Organometallics 2008, 27, 2399–2401
2399
A New Scorpionate Ligand: Tris(4,4-dimethyl-2-oxazolinyl)borate
and Its Zirconium(IV) Complexes
James F. Dunne, Jiachun Su, Arkady Ellern, and Aaron D. Sadow*
Department of Chemistry, U.S. DOE Ames Laboratory, Iowa State UniVersity, Ames, Iowa 50011-3111
ReceiVed March 18, 2008
rate complexes.4 In highly reactive complexes such as [Zr(κ3-
Tp*)(CH2C6H5)2]+, ligand decomposition through B-N cleavage
hinders possible utility in catalysis.2 In fact, isomerization via
1,2-sigmatropic shifts and B-N bond cleavage are common
reaction pathways for pyrazolylborate ligands in a range of
transition metal complexes.1c,d,3,11
Summary: The first example of a new class of oxazoline-based
scorpionate ligand, tris(4,4-dimethyl-2-oxazolinyl)phenyl borate,
[ToM]-, is prepared by reaction of 2-lithio-4,4-dimethyl-2-
oxazolide and 0.3 equiV of dichlorophenylborane. The steric
bulk of this ligand is greater than that of tris(3,5-Me2-
pyrazolyl)borate (Tp*), as quantified by comparison of solid
angles of crystallographically characterized zirconium(IV)
complexes.
To avoid this decomposition mechanism, we designed the
tris(oxazolinyl)borate scorpionate ligand that contains B-C
linkages, proposed to have greater resistance to cleavage and
isomerization processes.12 The synthesis of tris(4,4-dimethyl-
2-oxazolinyl)phenyl borate, [ToM]-, the first example of this
new ligand class, and its coordination chemistry in new
zirconium (IV) complexes are reported here. Lithium tris(4,4-
dimethyl-2-oxazolin-2-yl)phenyl borate (Li[ToM]) is prepared
by deprotonation of 4,4-dimethyl-2-oxazoline with n-BuLi (1.05
equiv) at -78 °C followed by addition of 0.30 equiv of
dichlorophenylborane (eq 1).
Sterically encumbered tris(pyrazolyl)borate ligands, such as
Tp* (HB(3,5-Me2-pyrazolyl)3), TptBuMe (HB(3-tBu-5-Me-pyra-
zolyl)3), and TpMes (HB(3-mesitylpyrazolyl)3), have recently
captured attention as useful ancillary ligands in early transition
metal chemistry.1–4 Early transition metal complexes of these
bulky ligands as well as those of parent tris(pyrazolyl)borate
(Tp) show interesting stoichiometric chemistry2–8 and display
catalytic activity in reactions such as olefin polymerization.2,4,8a,9,10
However, unsymmetrically substituted Tp derivatives (e.g.,
3-mesitylpyrazolyl) are susceptible toward isomerization pro-
cesses, giving mixtures of 3- and 5-substituted tris(pyrazolyl)bo-
* Corresponding author. E-mail: sadow@iastate.edu.
(1) (a) Calabrese, J. C.; Trofimenko, S.; Thompson, J. S. J. Chem. Soc.,
Chem. Commun. 1986, 1122–1123. (b) Trofimenko, S.; Calabrese, J. C.;
Thompson, J. S. Inorg. Chem. 1987, 26, 1507–1514. (c) Trofimenko, S.;
Calabrese, J. C.; Domaille, P. J.; Thompson, J. S. Inorg. Chem. 1989, 28,
1091–1101. (d) Trofimenko, S. Chem. ReV. 1993, 93, 943. (e) Trofimenko,
S. Scorpionates-The Coordination Chemistry of Polypyrazolylborate
Ligands; Imperial College Press: London, 1999.
(2) Lee, H.; Jordan, R. F. J. Am. Chem. Soc. 2005, 127, 9384–9385.
(3) (a) Kersten, J. L.; Kucharczyk, R. R.; Yap, G. P. A.; Rheingold,
A. L.; Theopold, K. H. Chem.s Eur. J. 1997, 3, 1668–1674. (b) Hess, A.;
Horz, M. R.; Liable-Sands, L. M.; Lindner, D. C.; Rheingold, A. L.;
Theopold, K. H. Angew. Chem., Int. Ed. 1999, 38, 166–168. (c) Qin, K.;
Incarvito, C. D.; Rheingold, A. L.; Theopold, K. H. Angew. Chem., Int.
Ed. 2002, 41, 2333–2335. (d) Qin, K.; Incarvito, C. D.; Rheingold, A. L.;
Theopold, K. H. J. Am. Chem. Soc. 2002, 124, 14008–14009.
(4) (a) Murtuza, S.; Casagrande, O. L.; Jordan, R. F. Organometallics
2002, 21, 1882–1890. (b) Michiue, K.; Jordan, R. F. Organometallics 2004,
23, 460–470.
Quantitative deprotonation of the oxazoline is necessary, as
mixtures of 2H-oxazoline, 2-lithio-oxazolide, and dichlorophe-
nylborane produce Li[ToM] and several unidentified products.
Independent experiments show that interaction of 4,4-dimethyl-
2-oxazoline and PhBCl2 in THF accounts for two of the side
products. Also, a slight excess of 2-lithio-oxazolide (0.30 equiv
of PhBCl2) is necessary, as 0.33 equiv of PhBCl2 and shorter
reaction times (<26 h) afford inseparable mixtures of Li[ToM]
and a species assigned as bis(4,4-dimethyl-2-oxazolin-2-yl)phe-
(5) (a) Reger, D. L.; Tarquini, M. E. Inorg. Chem. 1982, 21, 840–842.
(b) Reger, D. L.; Tarquini, M. E. Inorg. Chem. 1983, 22, 1064–1068. (c)
Reger, D. L.; Tarquini, M. E.; Lebioda, L. Organometallics 1983, 2, 1763–
1769.
1
nylborane on the basis of integration of its H NMR spectrum
and its 11B NMR chemical shift (-7.26 ppm).
(6) (a) Kresinski, R. A.; Hamor, T. A.; Jones, C. J.; McCleverty, J. A.
J. Chem. Soc., Dalton Trans. 1991, 603–608. (b) Kresinski, R. A.; Isam,
L.; Hamor, T. A.; Jones, C. J.; McCleverty, J. A. J. Chem. Soc., Dalton
Trans. 1991, 1835–1842.
(11) (a) Albinati, A.; Bovens, M.; Ru¨egger, H.; Venanzi, L. M. Inorg.
Chem. 1997, 36, 5991–5999. (b) Brunker, T. J.; Hascall, T.; Cowley, A. R.;
Rees, L. H.; O’Hare, D. Inorg. Chem. 2001, 40, 3170–3176. (c) Ku¨chkmann,
T. I.; Abram, U. Z. Anorg. Allg. Chem. 2004, 630, 783–785. (d) Biagini,
P.; Calderazzo, F.; Marchetti, F.; Romano, A. M.; Spera, S. J. Organomet.
Chem. 2006, 691, 4172–4180. (e) Zhao, N.; Van Stipdonk, M. J.; Bauer,
C.; Campana, C.; Eichhorn, D. M. Inorg. Chem. 2007, 46, 8662–8667.
(12) Although metal-mediated B-C bond cleavages are known, these
reactions are less facile than B-N bond cleavage. For representative
examples, see: (a) Bianchini, C.; Meli, A.; Laschi, F.; Vizza, F.; Zanello,
P. Inorg. Chem. 1989, 28, 227–233. (b) Konze, W. V.; Scott, B. L.; Kubas,
G. J. J. Chem. Soc., Chem. Commun. 1999, 1807–1808. (c) Strunkina, L. I.;
Minacheva, M. Kh.; Lyssenko, K. A.; Petrovskii, P. V.; Burlakov, V. V.;
Rosenthal, U.; Shur, V. B Russ. Chem. Bull., Int. Ed. 2006, 55, 174–176.
(d) Cho, J.; Yap, G. P. A.; Riordan, C. G. Inorg. Chem. 2007, 36, 11308–
11315.
(7) Antin˜olo, A.; Carrillo-Hermosilla, F.; Corrochano, A. E.; Ferna´ndez-
Baeza, J.; Lanfranchi, M.; Otera, A.; Pellinghelli, M. A. J. Organomet.
Chem. 1999, 577, 174–180.
(8) (a) Long, D. P.; Bianconi, P. A. J. Am. Chem. Soc. 1996, 118, 12453–
12454. (b) Blackwell, J.; Lehr, C.; Sun, Y.; Piers, W. E.; Pearce-Batchilder,
S. D.; Zaworotko, M. J.; Young, V. G. Can. J. Chem. 1997, 75, 701–711.
(c) Long, D. P.; Chandrasekaran, A.; Day, R. O.; Bianconi, P. A.; Rheingold,
A. L. Inorg. Chem. 2000, 39, 4476–4487.
(9) Nakazawa, H.; Ikai, S.; Imaoka, K.; Kai, Y.; Yano, T. J. Mol. Catal.
A 1998, 132, 33–41.
(10) (a) Furlan, L. G.; Gil, M. P.; Casagrande, O. L., Jr. Macromol.
Rapid Commun. 2000, 21, 1054–1057. (b) Gil, M. P.; Casagrande, O. L.,
Jr. J. Organomet. Chem. 2004, 689, 286–292.
10.1021/om800252p CCC: $40.75
2008 American Chemical Society
Publication on Web 05/07/2008