pubs.acs.org/joc
recognition (Figure 1).2 The pyridine rings were linked with
Preparation of Ethynylpyridine Macrocycles by
Oxidative Coupling of an Ethynylpyridine Trimer
with Terminal Acetylenes
acetylene bonds to keep rigidity and proper distances for this
purpose. Incorporation of this module into the macrocyclic
structure was essential to obtain the binding strength to
monosaccharides.3 We next designed macrocyclic oligomers
such as 2 with increased symmetry and the number of bind-
ing sites to further improve the binding strength.4,5 For the
preparation of those macrocycles, the Sonogashira reaction was
attempted to link the pyridine rings with acetylene bonds.
However, acyclic polymers were obtained instead of expected
macrocycles, which incidentally gave us fruitful results, in which
the polymer recognizes saccharides within the helical structure.6
To achieve macrocyclic hosts, we made an alternative plan to
attempt oxidative homocoupling mediated by a copper salt7 for
the tandem acetylene 3 bearing three pyridine rings. Herein, we
report the synthesis of ethynylpyridine macrocycles by oxidative
homocoupling, depending on the solvents used.
Hajime Abe,* Hiroyuki Kurokawa, Yusuke Chida, and
Masahiko Inouye*
Graduate School of Pharmaceutical Sciences, University of
Toyama, Sugitani 2630, Toyama 930-0194, Japan
abeh@pha.u-toyama.ac.jp; inouye@pha.u-toyama.ac.jp
Received September 30, 2010
The precursor for macrocyclization, tandem trimeric 2,6-
pyridylene ethynylene compound 13, was prepared as shown
in Scheme 1. Aliphatic alkoxy groups at the 4-positions of the
pyridine rings were introduced to improve solubility. Commer-
cially available 2,6-dibromopyridine 4 was converted into 2,6-
dibromo-4-nitropyridine 5 in three steps,8 and it was allowed to
react with metal alkoxides to give 4-alkoxypyridines 6 and 8.
The tert-butoxy derivative 6was treated with CuI/NaI9 to afford
diiodide 7. The octyloxy derivative 8 was converted into
dissymmetric diyne 10 via 9 by subsequent Sonogashira cou-
plings with 3-methylbutyn-2-ol and (tert-butyldimethylsilyl)-
acetylene. Base-promoted liberation of acetone from 10
Macrocycles consisted of pyridine rings and acetylene
bonds were prepared by Eglinton coupling from a tandem
precursor bearing two terminal alkynyl groups. The
composition of molecular size in the cyclized products
changed by the reaction solvent. In pyridine, 9-meric and
bigger macrocycles were obtained, while that of 6-mer
was not. On the other hand, in pyridine/THF mixed
solvent, the 6-mer was obtained as a major product.
(4) For a review of acetylenic macrocyclic π-systems with host ability, see:
€
Hoger, S. In Acetylene Chemistry; Diederich, F., Stang, P. J., Tykwinski,
R. R., Eds.; Wiley-VCH: Weinheim, 2005; pp 427-452.
(5) For recent examples of syntheses of ethynylpyridine-containing
macrocyclic π-systems, see: (a) Miki, K.; Fujita, M.; Inoue, Y.; Senda, Y.;
Kowada, T.; Ohe, K. J. Org. Chem. 2010, 75, 3537–3540. (b) Sonoda, M.;
Yamaguchi, Y.; Tahara, K.; Hirose, K.; Tobe, Y. Tetrahedron 2008, 64,
11490–11494. (c) Tobe, Y.; Nagano, A.; Kawabata, K.; Sonoda, M.;
Naemura, K. Org. Lett. 2000, 2, 3265–3268. (d) Opris, D. M.; Ossenbach,
Macrocyclic structures with multiple functionalities are
efficient for constructing artificial host molecules as repre-
sented by crown ethers and calixarenes.1 The higher sym-
metry of host structure and preorganization for guest mole-
cules reduce the entropic loss upon host-guest association.
During the course of our study on artificial host molecules
for saccharide recognition, the tripyridinic part in 1 was
found to be an effective module for monosaccharide
€
A.; Lentz, D.; Schluter, A. D. Org. Lett. 2008, 10, 2091–2093. (e) Grave, C.;
ꢁ
€
€
Lentz, D.; Schafer, A.; Samori, P.; Rabe, J. P.; Franke, P.; Schluter, A. D.
J. Am. Chem. Soc. 2003, 125, 6907–6918. (f) Spitler, E. L.; McClintock, S. P.;
Haley, M. M. J. Org. Chem. 2007, 72, 6692–6699. (g) Baxter, P. N. W.;
Dali-Youcef, R. J. Org. Chem. 2005, 70, 4935–4953. (h) Baxter, P. N. W.
Chem. Eur. J. 2003, 9, 5011–5022. (i) Campbell, K.; Kuehl, C. J.; Ferguson,
;
M. J.; Stang, P. J.; Tykwinski, R. R. J. Am. Chem. Soc. 2002, 124, 7266–7267.
(j) Campbell, K.; McDonald, R.; Tykwinski, R. R. J. Org. Chem. 2002, 67,
1133–1140. (k) Yamaguchi, Y.; Yoshida, Z. Chem. Eur. J. 2003, 9, 5430–
;
5440. (l) Kobayashi, S.; Yamaguchi, Y.; Wakamiya, T.; Matsubara, Y.;
Sugimoto, K.; Yoshida, Z. Tetrahedron Lett. 2003, 44, 1469–1472. (m) Jester,
€
S.-S.; Shabelina, N.; Le Blanc, S. M.; Hoger, S. Angew. Chem., Int. Ed. 2010,
(1) (a) Frontiers in Supramolecular Organic Chemistry and Photochem-
€
istry; Schneider, H.-J., Durr, H., Eds.; VCH: Weinheim, 1991. (b) Crown
Compounds; Cooper, S. R., Ed.; VCH: New York., 1992. (c) Calixarenes
€
2001; Asfari, Z., Bohmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer
Academic Publishers: Dordrecht, 2001.
€
49, 6101–6105. (n) Shabelina, N.; Klyatskaya, S.; Enkelmann, V.; Hoger, S.
C. R. Chim. 2009, 12, 430–436.
(6) (a) Inouye, M.; Waki, M.; Abe, H. J. Am. Chem. Soc. 2004, 126, 2022–
2027. (b) Abe, H.; Masuda, N.; Waki, M.; Inouye, M. J. Am. Chem. Soc.
(2) (a) Inouye, M.; Miyake, T.; Furusyo, M.; Nakazumi, H. J. Am. Chem.
Soc. 1995, 117, 12416–12425. (b) Inouye, M.; Takahashi, K.; Nakazumi, H.
J. Am. Chem. Soc. 1999, 121, 341–345. (c) Inouye, M.; Chiba, J.; Nakazumi,
H. J. Org. Chem. 1999, 64, 8170–8176.
(3) For examples of macrocyclic host molecules for saccharide recogni-
tion, see: (a) Barwell, N. P.; Crump, M. P.; Davis, A. P. Angew. Chem., Int.
Ed. 2009, 48, 7673–7676. (b) Ferrand, Y.; Klein, E.; Barwell, N. P.; Crump,
2005, 127, 16189–16196. (c) Waki, M.; Abe, H.; Inouye, M. Chem. Eur. J.
;
2006, 12, 7839–7847. (d) Waki, M.; Abe, H.; Inouye, M. Angew. Chem., Int.
Ed. 2007, 46, 3059–3061. (e) Abe, H.; Machiguchi, H.; Matsumoto, S.;
Inouye, M. J. Org. Chem. 2008, 73, 4650–4661. (f) Abe, H.; Murayama,
D.; Kayamori, F.; Inouye, M. Macromolecules 2008, 41, 6903–6909. (g) Abe, H.;
Takashima, S.; Yamamoto, T.; Inouye, M. Chem. Commun. 2009, 2121–2123.
(7) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed.
2000, 39, 2632–2657.
ꢀ
M. P.; Jimenez-Barbero, J.; Vicent, C.; Boons, G.-J.; Ingale, S.; Davis, A. P.
Angew. Chem., Int. Ed. 2009, 48, 1775–1779. (c) Ferrand, Y.; Crump, M. P.;
Davis, A. P. Science 2007, 318, 619–622. (d) Anderson, S.; Neidlein, U.; Gramlich,
V.; Diederich, F. Angew. Chem., Int. Ed. Engl. 1995, 34, 1596. (e) Aoyama, Y.;
Tanaka, Y.; Sugahara, S. J. Am. Chem. Soc. 1989, 111, 5397–5404.
(8) Rodriguez-Ubis, J. C.; Sedano, R.; Barroso, G.; Juanes, O.; Brunet, E.
Helv. Chim. Acta 1997, 80, 86–96. See also: Nettekoven, M.; Jenny, C. Org.
Process Res. Dev. 2003, 7, 38–43.
(9) Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 14844–14845.
DOI: 10.1021/jo101921e
r
Published on Web 12/08/2010
J. Org. Chem. 2011, 76, 309–311 309
2010 American Chemical Society