Table 1 Fluorescence quantum yields (FF)a of 1a (2.0 mM) and 1b
(2.0 mM) at different coordination states in MeCN at 25 1C
reversible coordination between small molecules and metal
ions. Therefore, this system can be reset if needed by treating
with EDTA (see Fig. S10, ESIw).
No metal
+Zn2+ b
+Cd2+ b
+Zn2+ and Cd2+ b
This work was supported by the Florida State University.
FF (1a) 0.04 ꢁ 0.01 0.47 ꢁ 0.05 0.58 ꢁ 0.07 0.53 ꢁ 0.09
FF (1b) 0.06 ꢁ 0.01 0.37 ꢁ 0.04 0.32 ꢁ 0.03 0.60 ꢁ 0.02
Fluorescence quantum yields (FF) were determined in MeCN (with
a
Notes and references
1.0 eq. of DIPEA and 5 mM TBAP) at 25 1C by using solutions of
anthracene (FF = 0.27, ethanol) and quinine sulfate (FF = 0.546,
0.5 M H2SO4) as references.29 b Zn2+ and Cd2+ were added as quanta
of 1.0 and 0.7 eq. for 1a and 1b, respectively.
2 V. Balzani, M. Venturi and A. Credi, in Molecular Devices and
Machines—A Journey into the Nanoworld, WILEY–VCH, Wein-
heim, 2003, pp. 235–266.
3 A. P. de Silva and N. D. McClenaghan, Chem.–Eur. J., 2004, 10,
574–586.
4 J. F. Stoddart and A. R. Pease, Struct. Bonding, 2001, 99, 189–236.
5 U. Pischel, Angew. Chem., Int. Ed., 2007, 46, 4026–4040.
6 P. Ball, Nature, 2000, 406, 118–120.
7 A. Credi, Angew. Chem., Int. Ed., 2007, 46, 5472–5475.
8 A. P. de Silva and S. Uchiyama, Nat. Nanotechnol., 2007, 2,
399–410.
9 A. P. de Silva, H. Q. N. Gunaratne and C. P. McCoy, Nature,
1993, 364, 42–44.
10 V. Balzani, A. Credi and M. Venturi, Chem.–Eur. J., 2008, 14,
26–39.
11 G. J. Brown, A. P. de Silva and S. Pagliari, Chem. Commun., 2002,
2461–2463.
12 A. P. de Silva and N. D. McClenaghan, J. Am. Chem. Soc., 2000,
122, 3965–3966.
13 M. N. Stojanovic and D. Stefanovic, J. Am. Chem. Soc., 2003, 125,
6673–6676.
14 D. Margulies, G. Melman, C. E. Felder, R. Arad-Yellin and A.
Shanzer, J. Am. Chem. Soc., 2004, 126, 15400–15401.
15 J. Andreasson, G. Kodis, Y. Terazono, P. A. Liddell, S. Bandyo-
padhyay, R. H. Mitchell, T. A. Moore, A. L. Moore and D. Gust,
J. Am. Chem. Soc., 2004, 126, 15926–15927.
16 X. Guo, D. Zhang, G. Zhang and D. Zhu, J. Phys. Chem. B, 2004,
108, 11942–11945.
17 D.-H. Qu, Q.-C. Wang and H. Tian, Angew. Chem., Int. Ed., 2005,
44, 5296–5299.
18 F. Remacle, R. Weinkauf and R. D. Levine, J. Phys. Chem. A,
2006, 110, 177–184.
Fig. 5 Fluorescence intensity of 1a in MeCN, reflected as the heights
of the cones, at 449 nm (‘‘Red’’ channel) and 390 nm (‘‘Blue’’ channel)
are interpreted as CARRY and SUM digits of a binary half-adder,
respectively. The numbers on the x-axis are input combinations. ‘‘0’’
represents no addition of metal ion; ‘‘1’’ represents 2.0 mM of Cd2+
(I2) or 2.0 mM of Zn2+ (I1). The numbers on the cones are output
values. ‘‘0’’ represents low fluorescence intensity; ‘‘1’’ represents high
fluorescence intensity.
19 R. Baron, O. Lioubashevski, E. Katz, T. Niazov and I. Willner,
Angew. Chem., Int. Ed., 2006, 45, 1572–1576.
20 D. Margulies, G. Melman and A. Shanzer, J. Am. Chem. Soc.,
2006, 128, 4865–4871.
metal ions (Zn2+ and Cd2+) of given quantities as inputs is
successfully demonstrated (Fig. 3).
21 Y. Zhou, H. Wu, L. Qu, D. Zhang and D. Zhu, J. Phys. Chem. B,
2006, 110, 15676–15679.
22 L. Zhang, R. J. Clark and L. Zhu, Chem.–Eur. J., 2008, DOI:
10.1002/chem.200701419..
23 K. Rurack, A. Koval’chuck, J. L. Bricks and J. L. Slominskii, J.
Am. Chem. Soc., 2001, 123, 6205–6206.
24 A. Ohshima, A. Momotake and T. Arai, Tetrahedron Lett., 2004,
45, 9377–9381.
25 J. N. Wilson and U. H. F. Bunz, J. Am. Chem. Soc., 2005, 127,
4124–4125.
26 J. Yuasa and S. Fukuzumi, J. Am. Chem. Soc., 2006, 128,
15976–15977.
27 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515–1566.
28 M. E. Huston, K. W. Haider and A. W. Czarnik, J. Am. Chem.
Soc., 1988, 110, 4460–4462.
In summary, we have demonstrated unimolecular half
adders 1a and 1b that accept non-interacting, hence orthogo-
nal chemical inputs of Zn2+ and Cd2+ of given quantities. The
generation of output signals of the binary half-adder truth
table is fully based upon the processing power of the molecular
half-adders on both chemical inputs, rather than the chemical
reactivities of the two inputs toward each other. The design of
the binary half-adders is based upon sound photophysical and
coordination principles of heteroditopic arylvinyl-bipyridyl
fluorophore platform established in our laboratory;22 the
interpretation of output signals as fluorescence intensities at
two different wavelengths is straightforward. The system is of
high performance in terms of the large signal contrasts be-
tween ‘‘0’’s and ‘‘1’’s; therefore, subtle threshold settings are
not needed. The arithmetic function is based upon the facile
29 S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 1999, 76,
1260–1264.
ꢀc
This journal is The Royal Society of Chemistry 2008
1882 | Chem. Commun., 2008, 1880–1882