form exciplexes at the interface between the two layers. Our
observation leads to a novel method to design a white light
source by employing two layer LEDs consisting of an electron-
donating layer and an electron-attracting layer both of which
are blue-emitting, but are able to form green and red-light
emitting exciplexes. This work also provides us with an
excellent example that reveals a color tuning by changing the
applied field. The light intensity and the device efficiency of the
present devices, however, require much further improvement to
be acceptable for practical application.
Acknowledgements
This work was supported by the Korea Science and Engineer-
ing Foundation through CMR of Korea University. S. W. Cha
is a recipient of the Brain Korea 21 scholarship from the
Ministry of Education and Human Resources, Korea.
References
1
2
C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys., 1989,
65, 3610.
3
J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature,
1990, 347, 539.
D. Braun and A. J. Heeger, Appl. Phys. Lett., 1991, 58, 1982.
G. Grem, G. Leditzky, B. Ullrich and G. Leising, Adv. Mater.,
1992, 4, 36.
N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend
and A. B. Holmes, Nature, 1993, 365, 628.
Y. Ohmori, M. Uchido, K. Muro and K. Yoshino, Jpn. J. Appl.
Phys., Part 2, 1991, 30, L1938.
Experimental
Synthesis
4
5
The synthetic route to the two compounds are shown in
Scheme 1 and 2.
Details are available in the Supporting Information. Only
structural characterization data for Cz3d and Oxa3d are given
below.
6
7
8
9
S.A.Slyke,C.H,ChenandC.W.Tang,Appl.Phys.Lett.,1996,69,160.
D. D. C. Bradley, Synth. Met., 1993, 54, 401.
10 A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend,
N. C. Greenham, P. L. Burn, A. B. Holmes and A. Kraft, Appl.
Phys. Lett., 1992, 61, 2793.
11 A. Kraft, A. C. Grimsdale and A. B. Holmes, Angew. Chem., Int.
Engl., 1998, 171, 161.
12 M. Halim, J. N. G. Pillow, I. D. W. Samuel and P. L. Burn, Adv.
Mater., 1999, 11, 371.
13 P. W. Wang, Y. J. Liu, C. Devadoss, P. Bharathi and J. S. Moore,
Adv. Mater., 1996, 8, 237.
14 G. E. Johnson and K. M. McGrane, Proc. SPIE-Int. Soc. Opt.
Eng., 1993, 1910, 6.
15 J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Appl. Phys.
Lett., 1994, 64, 815.
3,6-Bis(2-{4-[3,6-bis(4-tert-butylphenyl)cabazole-9-yl]phenyl}-
vinyl)-9-p-tolyl-9H-cabazole (Cz3d). 1H NMR spectrum
(CDCl3, ppm): d 1.40 (s, 36H, C(CH3)3,), 2.53 (s, 3H, CH3),
7.34–7.80 (m, 54H, Ar-H), 8.40 (s, 6H, Ar-H). FTIR (KBr,
cm21): 3064 (Ar C–H stretching), 2965 (aliphatic C–H
stretching), 1596, 1508 (Ar CLH stretching), 1276, 1220 (C–N
stretching). Elemental analysis: Calc. for C99H89N3: C, 90.03;
H, 6.79; N, 3.18%. Found: C, 90.12; H, 6.88; N, 3.20%.
MALDI-TOF MS: Calc. for C99H90N3 (MH1) m/z 1320.7,
found: 1321.0.
16 M. Berggren, G. Gustafsson, O. Ingana¨s, M. R. Andersson,
T. Hjertberg and O. Wennerstro¨m, J. Appl. Phys., 1994, 76, 7530.
17 S. Tasch, E. J. W. List, O. Ekstro¨m, W. Graupner, G. Leising,
P. Schlichting, U. Rohr, Y. Geerts, U. Scherf and K. Mu¨llen, Appl.
Phys. Lett., 1997, 71, 2883.
18 O. Ingana¨s, M. Berggren, M. R. Andersson, G. Gustafsson,
T. Hjertberg, O. Wennerstro¨m, P. Dyreklev and M. Granstrom,
Synth. Met., 1995, 71, 2121.
19 H. K. Shim, I. N. Kang, M. S. Jang, T. Zyung and S. D. Jung,
Macromolecules, 1997, 30, 7749.
20 C. C. Wu, J. C. Sturm, R. A. Register and M. E. Tompson, Appl.
Phys. Lett., 1996, 69, 3117.
2-[3,5-Bis(2-{4-[5-(4-tert-butylphenyl) - 1, 3, 4-oxadiazole-2-
yl]phenyl}vinyl)phenyl]-5-(4-methylphenyl)-1, 3, 4-oxadiazole
(Oxa3d). Yield ~ 62% (1.20 g); mp 218 uC. 1H NMR
(300 MHz, CDCl3, ppm): d 1.39 (s, 18H, C(CH3)3,), 2.44 (s, 3H,
CH3), 7.30 (s, 4H, CHLCH), 7.36 (d, 2H, Ar-H), 7.57 (d, 4H,
Ar-H), 7.72 (d, 4H, Ar-H), 7.81 (s, 1H, Ar-H), 8.05–8.19 (m,
12H, Ar-H). FTIR (KBr, cm21): 3064 (Ar C–H stretching),
2964 (aliphatic C–H stretching), 1613, 1494 (Ar CLH
stretching), 1575 (CLN stretching), 1012 (C–O–C stretching).
Elemental analysis: Calc. for C55H48N6O3: C, 78.55; H, 5.75; N
9.99%. Found: C, 78.45; H, 5.80; N 9.89%. MALDI-TOF MS:
Calc. for C55H49N6O3 (MH1) m/z 841.4, found: 841.6.
21 R. H. Jordan, A. Dodabalapur, M. Strukelj and T. M. Miller,
Appl. Phys. Lett., 1996, 68, 1192.
22 Y. Kuwahara, H. Ogawa, H. Inada, N. Norma and Y. Shirota,
Adv. Mater., 1994, 6, 677.
23 C. Adachi, K. Nagui and N. Tamoto, Appl. Phys. Lett., 1995, 66,
2679.
Identification and measurement
24 B. E. Koene, D. E. Loy and M. E. Tompson, Chem. Mater., 1998,
10, 2235.
1H NMR (300 MHz) and IR spectra were recorded on a Varian
AM 300 spectrometer and on a Bomem MB FT-IR instrument,
respectively. Elemental analyses were performed by the Center
for Organic Reactions, Sogang University, Seoul, Korea, using
an Eager 200 elemental analyzer. Thermal properties were
studied under a nitrogen atmosphere on a Mettler DSC 821e
instrument. The molecular mass of each compound was
measured using a matrix-assisted laser desorption/ionization
time of flight (MALDI-TOF) PerSeptive Biosystems Voyager-
DE2RP mass spectrometer. The UV-vis absorption and
luminescence spectra were recorded on an HP8452A Diode
Array spectrophotometer and an AMINCO-Bowman Series 2
luminescence spectrometer, respectively, at room temperature.
Fabrication methods and conditions can be found else-
where.1,16,20,21 The current and luminescence intensity as a
function of applied field were measured using an assembly
consisting of a PC-based DC power supply (HP 6623A) and a
digital multimeter (HP 34401). A light power meter (Newport
Instruments, Model 818-UV) was used to measure the device
light output in mW. Luminance was measured by a MINOLTA
LS-100 luminance meter.
25 (a) C. Zhang, H. von Seggern, K. Pakbaz, B. Kraabel,
H. W. Schmidt and A. J. Heeger, Synth. Met., 1994, 62, 35;
(b) B. Hu, Z. Yang and F. E. Karasz, J. Appl. Phys., 1994, 76,
2419; (c) G. Wang, C. Yuan, H. Wu and Y. Wei, J. Appl. Phys.,
1995, 78, 2679; (d) Y. Z. Wang and A. J. Epstein, Acc. Chem. Res.,
1999, 32, 217.
26 (a) D. B. Romero, M. Schaer, M. Leclerc, D. Ados, A. Siove and
L. Zuppiroli, Synth. Met., 1996, 80, 271; (b) D. B. Romero,
F. Nesch, T. Benazzi, D. Ados, A. Siove and L. Zuppiroli, Adv.
Mater., 1997, 9, 1158; (c) S. Maaruyama, X.-T. Tao, H. Hokari,
T. Noh, Y. Zhang, T. Wada, H. Sasabe, H. Suzuki, T. Watanabe
and S. Miyata, J. Mater. Chem., 1999, 9, 893; (d) Z. Zhu and
J. S. Moore, J. Org. Chem., 2000, 65, 116; (e) K. R. J. Thomas,
J. T. Lin, Y.-T. Tao and C.-W. Ko, Adv. Mater., 2000, 12, 1949;
(f) K. Kim, Y.-R. Hong, S.-W. Lee, J.-I. Jin, Y. Park, B. H. Sohn,
W.-H. Kim and J.-K. Park, J. Mater. Chem., 2001, 11, 3023.
27 (a) W. Huang, H. Meng, W.-L. Yu, J. Gao and A. J. Heeger, Adv.
Mater., 1998, 10, 593; (b) S.-J. Chung, K.-Y. Kwon, S.-W. Lee,
J.-I. Jin, C. H. Lee, C. E. Lee and Y. Park, Adv. Mater., 1998, 10,
1112; (c) Z. Peng and J. Zhang, Adv. Mater., 1999, 11, 1138;
(d) D. W. Lee, K.-Y. Kwon, J.-I. Jin, Y. Park, Y.-R. Kim and
I.-W. Hwang, Chem. Mater., 2001, 13, 565; (e) H.-K. Shim and
J.-I. Jin, Adv. Polym. Sci., 2002, 158, 194.
J. Mater. Chem., 2003, 13, 479–484
483