alkyl peroxide was used as the oxidant, was reported by
Fujita.7a Subsequently, Bolm reported a highly selective
and promising catalyst system in which a combination
of the amino alcohol-derived Schiff base with vanadium
was employed, and the oxidation proceeded in up to 85%
enantiomeric excess, with very low catalyst loading and
with hydrogen peroxide as a nontoxic and inexpensive
stoichiometric oxidant.7b Employing this catalyst system,
Ellman has successfully and extensively studied the
catalytic asymmetric oxidation of tert-butyl disulfide.8
Very recently, Bolm reported the iron-catalyzed version
of this system for the asymmetric sulfide oxidation.7d An
oxidation catalyst system for the sulfoxidation of sulfide
that combines high catalytic efficiency and excellent
enantioselectivity remains an important goal.
Nitrogen-containing ligands are one of the most com-
mon types of chiral ligands, which are becoming applic-
able for catalytic asymmetric synthesis.9 It has been re-
ported that the chiral ligands containing a secondary
amino group (sp3-hybridized nitrogen atom) are superior
in terms of reactivity and enantioselectivity to imino ana-
logues (sp2-hybridized nitrogen atom).10 Herein, we wish
to report a catalytic asymmetric oxidation of sulfides to
sulfoxides with excellent enantioselectivity by means of
a facile and efficient procedure using chiral vanadium-
salan complexes as the catalysts. Kinetic resolution of
racemic sulfoxides catalyzed by an identical system is
also described.
Efficient Asymmetric Oxidation of Sulfides
and Kinetic Resolution of Sulfoxides
Catalyzed by a Vanadium-Salan System
Jiangtao Sun,† Chengjian Zhu,*,†,‡ Zhenya Dai,†
Minghua Yang,† Yi Pan,† and Hongwen Hu†
School of Chemistry and Chemical Engineering, State Key
Laboratory of Coordination Chemistry, Nanjing University,
Nanjing 210093, China, and State Key Laboratory of
Organometallic Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences,
Shanghai 200032, China
Received June 25, 2004
Abstract: The asymmetric oxidation of sulfides to chiral
sulfoxides with hydrogen peroxide in good yield and high
enantioselectivity has been catalyzed very effectively by chi-
ral vanadium-salan [N,N′-alkyl bis(salicylamine)] complex.
The salan ligand shows results superior in terms of reactiv-
ity and enantioselectivity to those of salen [N,N′-alkylene
bis(salicylideneimine)] analogue, and provides the sulfoxide
with opposite configuration. The high enantioselectivity of
this reaction is the direct result of the asymmetric oxidation.
The efficient kinetic resolution of racemic sulfoxides cata-
lyzed by the vanadium-salan system is also described.
Enantiopure sulfoxides constitute a class of the most
efficient and versatile chiral controllers and useful syn-
thons in asymmetric synthesis, and they are of great
interest in the pharmaceutical industry as biologically
significant compounds.1 The synthesis of chiral nonra-
cemic sulfoxides with high enantiomeric purity has been
a subject of constant interest over the past two decades.
The following two types of procedures have been most
commonly employed for the preparation of chiral sulfox-
ides: (1) an approach that consists of the synthesis of a
sulfinylating agent with an electrophilic sulfur of known
configuration, followed by the reaction with an organo-
metallic regent,2 and (2) the direct asymmetric oxidation
of the easily available prochiral sulfides.3 In the latter
procedure, catalytic asymmetric oxidation of sulfides with
chiral metal complexes or enzymes is undoubtedly the
most attractive and economical method because of its
simplicity. Following the initial reports by Kagan4 and
Modena5 on the use of a modified Sharpless reagent, most
of the metal-catalyzed enantioselective oxidation of sul-
fides are based on the use of chiral titanium or manga-
nese complexes.6 In contrast, vanadium catalysts have
been less extensively investigated.7 The first example of
vanadium-catalyzed asymmetric sulfoxidation, in which
The readily obtainable tetradentate salan ligands 1
and 2, which are based on the (R,R)-1,2-diaminocyclo-
(3) (a) Crich, D.; Mataka, J.; Sun, S.; Lam, K. C.; Rheingold, A. L.;
Wink, D. Chem. Commun. 1998, 2763. (b) Ozaki, S.; Matsui, T.;
Watanabe, Y. J. Am. Chem. Soc. 1997, 119, 6666. (c) Kagan, H. B.;
Rebiere, F. Synlett 1990, 643. (d) Schultz, P. G.; Lerner, R. A. Science
1995, 269, 1835. (e) Bethel, D.; Page, P. B.; Vahedi, H. J. Org. Chem.
2000, 65, 6756. (f) Adam, W.; Korb, M. N.; Roschmann, K. J.; Saha-
Moller, C. R. J. Org. Chem. 1998, 63, 3424. (g) Schenk, W. A.; Durr,
M. Chem.sEur. J. 1997, 3, 713. (h) Kadnikova, E.; Kostic, N. M. J.
Org. Chem. 2003, 68, 2600.
(4) (a) Kagan, H. B.; Dunach, E.; Nemecek, C.; Pitchen, P.; Samuel,
O.; Zhao, S. H. Pure Appl. Chem. 1985, 57, 1911. (b) Zhao, S. H.;
Samuel, O.; Kagan, H. B. Tetrahedron 1987, 43, 5135. (c) Puchot, C.;
Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B. J. Am.
Chem. Soc. 1986, 108, 2353. (d) Luukas, T. O.; Girard, C.; Fenwick,
D. R.; Kagan, H. B. J. Am. Chem. Soc. 1999, 121, 9299.
(5) (a) Di Furia, F.; Modena, G.; Seraglia, R. Synthesis 1984, 325.
(b) Bortolini, O.; Di Furia, F.; Licini, G.; Modena.; Rossi, M. Tetrahe-
dron Lett. 1986, 27, 6257.
(6) (a) Brunel, J. M.; Kagan, H. B. Synlett 1996, 404. (b) Bonchio,
M.; Licini, G.; Modena G.; Bartolini, O.; Moro, S.; Nugent, W. J. Am.
Chem. Soc. 1999, 121, 6258. (c) Chen, Y.; Yekta, S.; Martyn, J. P.;
Zheng, J.; Yudin, A. K. Org. Lett. 2002, 2, 3433. (d) Noda, K.; Hosoya,
N.; Irie, R.; Yamashita, Y.; Katsuki, T. Tetrahedron 1994, 50, 9609.
(7) (a) Nakajima, K.; Kojima, M.; Fujita, J. Chem. Lett. 1986, 1483.
(b) Bolm, C.; Bienewald, F. Angew. Chem., Int. Ed. Engl. 1995, 34,
2640. (c) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997,
119, 9913. (d) Vetter, A.; Berkessel, A. Tetrahedron Lett. 1998, 39, 1741.
(e) Legros, J.; Bolm, C. Angew. Chem., Int. Ed. 2003, 42, 5487.
(8) (a) Liu, G.; Cogan, D.; Ellman, J. A. J. Am. Chem. Soc. 1997,
119, 9913. (b) Cogan, D.; Liu, G.; Kim, K.; Backes, B. J.; Ellman, J. A.
J. Am. Chem. Soc. 1998, 120, 8011.
(9) For reviews see: (a) France, S.; Guerin, D. J.; Miller, S. J.;
Lectka, T. Chem. Rev. 2003, 103, 2985. (b) Bennani, Y. L.; Hanessian,
S. Chem. Rev. 1997, 97, 3161. (c) Canali, L.; Sherrington, D. C. Chem.
Soc. Rev. 1999, 28, 85.
(10) (a) Gao, J. X.; Ikariya, T.; Noyori, R. Organometallics 1996, 15,
1087. (b) Ward, C. V.; Jiang, M. L.; Kee, T. Tetrahedron Lett. 2000,
41, 6181. (c) Duxbury, J. P.; Cawley, A.; Thornton-Pett, M.; Wantz,
L.; Warne, J. N. D.; Greatrex, R.; Brown, D.; Kee, T. Tetrahedron Lett.
1999, 40, 4403.
† Nanjing University.
‡ Chinese Academy of Sciences.
(1) (a) Fernandez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651 and
references therein. (b) Garcia Ruano, J. L.; Cid, B. Top. Curr. Chem.
1999, 204, 103. (c) Renaud, P.; Gerster, M. Angew. Chem., Int. Ed.
1998, 37, 2562. (d) Blum S. A.; Bergman R. G.; Ellman J. A. J. Org.
Chem. 2003, 68, 150. (e) Carlsson, E.; Lindberg, P.; von Unge, S. Chem.
Br. 2002, May, 42. (f) Renfrey, S.; Featherstne, J. Nat. Rev. Drug.
Discov. 2002, 1, 175.
(2) (a) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.;
Senanayake, C. H. J. Am. Chem. Soc. 2002, 124, 7880. (b) Whitesell
J. K.; Wong, M. S. J. Org. Chem. 1994, 59, 597. (c) Oppolzer, W.;
Froelich, O.; Wiaux-Zamar, C.; Bernardinelli, G. Tetrahedron Lett.
1997, 38, 2825. (d) Khiar, N.; Araujo, S. C.; Alcudia, F.; Fernandez, I.
J. Org. Chem. 2002, 67, 345.
10.1021/jo040221d CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/28/2004
8500
J. Org. Chem. 2004, 69, 8500-8503