5
† Electronic Supplementary Information (ESI) available: [1H
Table 4 shows the extended scope of this protocol for ring
opening of epoxide with amines, such as aryl and cyclic
and 13C NMR of new compounds spectral data].
amine at 45 C for 20min. In the reaction of epoxide with
1
2
For Review on Epoxide opening sees: Bonini, C.; Righi,
G. Synthesis 1994, 225-238.
aryl amine, morpholine. the nucleophilic addition occurred
from the less-subsituted side, affording selectively β-
hydroxy amine products (entries 1-3). In contrast, the
reaction of styrene epoxide with morpholine or other aryl
amines afforded β-amino alcohols as single regio-selective
products (entries 4-8). The results obtained with respect to
regioselectivity are in agreement with earlier report of
zirconium phosphonate catalyzed ring opening of
epoxides.19 Notably, ring opening of epoxide was found to
be more efficient and general with diverse range of the
cyclic and heterocyclic amines such as morpholine, aniline,
2-amino naphthalene and imidazole efficiently leading to the
corresponding amino alcohol in excellent yield. the
cyclohexene epoxide was also successfully converted to
trans-β-hydroxy amine in quantitative yield (entry 10-11).
From the experiment, it is evident that, in case of aliphatic
epoxides steric effect predominates over electronic-
controlled factor thereby facilitating the attack at the less
hindered carbon atom of the epoxide ring. Overall, the
epoxide ring opening with amine and alcohol indicates that
ZrO(NO3)2 nH2O has shown best catalytic activity with wide
substrate scope as compared to the previously reported
bismuth triflate20 or Zr-silicate-nano particles.1
Minami, A.; Shimaya, M.; Suzuki, G.; Migita, A. Shinde,
S. S.; Sato, K.; Watanabe, K.; Tamura, T.; Oguri H.;
Oikawa, H. J. Am. Chem. So., 2012, 134, 7246−7249. b)
Minami, A.; Migita, A.; Inada, D.; Hotta, K. Watanabe,
K.; Oguri, H.; Oikawa, H. Org. Lett. 2011, 13, 1638-
1641. c) Hotta, K., Chen, X.; Paton, R. S.; Minami, A.;
Li, H.; Swaminathan, K.; Mathews, I.; Watanabe, K.;
Oikawa, H.; Houk, K. N.; Kim, K. N. C.-Y. Nature. 2012,
483, 355-358.
a) Hodson, L. F.; Parker, T. M.; Whittaker, D. J. Chem
Soc., Chem. Commun. 1993, 1427-1428. b) Otera, J.;
Niibo, Y.; Tatsumi, N.; Nozaki, H.; J. Org. Chem. 1988,
53, 275-278. c) Olah, G. A.; Fung, A. P.; Meidar, D.
Synthesis. 1981, 280-282.
Izquierdo, J.; Rodriguez, S.; Gonzalez, F. V.; Org. Lett.
2011, 13, 3856-3859.
(a) Barluenga, J.; Va´zquez-Villa, H.; Ballesteros, A.;
Gonzalez, J. Org. Lett. 2002, 4, 2817-2819. (b) Kamal,
A.; Ramu, R.; Azhar, M. A.; Khanna R. G. B.
Tetrahedron Lett. 2005, 46, 2675–2677
3
4
5
6
7
Yadav, G. D.; Singh, S.; Tetrahedron Lett. 2014, 55,
3979–3983.
a) Uesugi, S.; Watanabe, T.; Imaizumi, T. Shibuya, M.;
Kanoh, N.; Iwabuchi, Y.; Org. Lett. 2014, 16,
4408−4411; b) Likhar, P.; Kumar, M.; Bandyopadhyay,
A. Synlett. 2001, 7, 836–838.
8
9
Williams G, D. B.; Lawton, M.; Org. Biomol. Chem. 2005,
3, 3269-3272.
Sheldon, R.; in Green Chemistry in the Pharmaceutical
Industry, ed. Dunn, P. J.; Wells, A. S.; Williams, M. T.
2010, Wiley-VCH, Weinheim. 1–20
Conclusion
An efficient ring-opening of epoxides by variety of alcohols and
amines is developed using zirconium oxynitrate hydrated salt as
catalyst. We believe this will present a better environmentally
benign protocol and should find widespread application in green
chemical reactions.
10 Mantri, K.; Komura, K.; Sugi, Y. Green Chem. 2005, 7,
677-682
11 Kore, R.; Srivastava, R.; Satpati, B.; ACS Catal., 2013, 3,
2891.
12 Kahandal, S. S.; Kale, S. R.; Disale, S. T. Jayaram, R. V.
Catal. Sci. Technol. 2012, 2, 1493–1499.
13 Bhanushali, M. J.; Nandkumar, N. S.; Bhor, M. D.;
Bhanage, B. M. Tetrahedron Lett. 2008, 49, 3672-3676.
14 Chakraborti, A. K.; Kondaskar, A. Tetrahedron Lett. 2003,
44, 8315-8319.
15 Das, B.; Krishnaiah, M.; Venkateswarlu, K. Tetrahedron
Lett. 2006, 47, 6027–6029.
16 Stowers, K.; Kubota, A.; Sanford, M. Chem. Sci. 2012, 3,
3192-3195.
17 (a) Shinde, S. S.; Patil, S. N.; Ghatge, A. Kumar, P. New
J. Chem. 2015, 39, 4368-4374; (b) Shinde, S. S.; Patil, S.
N. Org. Biomol. Chem. 2014, 12, 9264–9271; (c) Shinde,
S. S.; Chi, H. M.; Lee, B. S.; Chi, D. Y. Tetrahedron Lett.
2009, 50, 6654–6657; (d) Shinde, P. S. Shinde, S. S.;
Renge, A. S.; Rode, A. B.; Pawar,R. P.; Lett. Org. Chem.
2009, 6, 8–10; (e) Shinde, S. S.; Lee, B. S.; Chi, D. Y.
Tetrahedron Lett., 2008, 49, 4245–4248; (f) Shinde, S. S.;
Lee, B. S.; Chi, D. Y. Org. Lett. 2008, 10, 733–735. (g)
Pandey, R. K. Upadhyay, R. K., Shinde, S. S., Kumar. P.
Synth Commun. 2004, 34, 2323-2329.
18 (a) Eisch, J. J.; Liu, Z. –R., Ma, X.; Zheng. G. –X. J. Org.
Chem. 1992, 57, 5140-5144. (b) Hanzlik, R. P.;
Leinwetter, M. J. Org. Chem. 1978, 43, 438-440.
19 Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.;
Eur. J. Org. Chem. 2001, 41,49-4152.
General procedure of alcoholysis and amynolysis: A mixture of
styrene epoxide (120 mg, 1.0 mmol) and t-butyl alcohol (3 ml)
[or morpholine (0.5 mL)] and ZrO(NO3)2 nH2O (46 mg, 20
mol%). The mixture was heated under stirring at 45 C. The
progress of reaction was monitored by GC-MS and TLC. After
completion, the reaction mixture was concentrated under the
reduced pressure. Then crude product was purified using column
cromatography (20% ethyl acetate:pet ether, rf 0.6) to afford
168.7 mg (87 %) of 2-tert-butoxy-2-phenylethanolas a white
solid. obs mp 76-78 C, reported mp 77-79 C; 6 1H NMR (500
MHz, CDCl3): δ = 7.39–7.28 (m, 5H), 4.65 (dd, J = 8.05, 4.39
Hz, 1H), 3.56–3.50 (m, 2H), 1.21 (s, 9H). 13C NMR (125 MHz,
CDCl3) 28.7, 67.8, 74.8, 75.1, 126.3, 127.2, 128.1, 142.2; HRMS
(EI) calcd for C12H18O2 (M+) 194.3068, found 194.3066.
Acknowledgements
S. S. Shinde would like to thank Department of Science and
Technology (DST), India for financial support in form of the Fast
Track Young scientist (SB/FT/CS-042/2013) and Ramanujan
fellowship (SR/S2/RJN-111/2012). We are grateful to Director
CSIR-NCL for his constant support and encouragement.
References and notes
20 (a) Ollevier, T.; Lavie-Compin, G. Tetrahedron Lett. 2002,
43, 7891-7893. (b) Ollevier, T.; Lavie-Compin, G.
Tetrahedron Lett. 2004, 45, 49-52.
Organic Chemistry Division, National Chemical Laboratory
(CSIR-NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008,
India. Fax: +91- 020-25902627; Tel: +91-020-25902329; E-