Efficient Microwave-Assisted Synthesis of Imines
847
Table 3. Systematic approach to improving the reaction of a ketone
with an amine, with the most successful highlighted
Acknowledgements
We would like to thank the Australian Research Council for financial
support.
Temp [8C]
Solvent
Time [min]
ConversionA [prod : smB]
References
50
50
50
70
70
70
80
80
80
DCM
DCM
DCM
MeOH
MeOH
MeOH
EtOH
EtOH
EtOH
10
20
30
10
20
30
10
20
30
28 : 72
62 : 38
66 : 34
49 : 51
64 : 36
41 : 59
78 : 22
63 : 37
58 : 42
[1] (a) S. Suga, M. Kitamura, in Comprehensive Chirality (Eds E. M.
Carreira, H. Yamamoto) 2012, pp. 328–342 (Elsevier: Amsterdam).
(b) S. F. Martin, Pure Appl. Chem. 2009, 81, 195. doi:10.1351/
(c) L. H. Choudhury, T. Parvin, Tetrahedron 2011, 67, 8213.
(d) R. N. Salvatore, C. H. Yoon, K. W. Jung, Tetrahedron 2001, 57,
[2] (a) D. K. T. Yadav, B. M. Bhanage, Synlett 2014, 25, 1611.
ADetermined by 1H NMR spectroscopy.
BRatio of product (prod) to starting material (sm).
(b) E. Sindhuja, R. Ramesh, Tetrahedron Lett. 2014, 55, 5504.
(c) L. Han, P. Xing, B. Jiang, Org. Lett. 2014, 16, 3428. doi:10.1021/
(d) W. Cui, B. Zhaorigetu, M. Jia, W. Ao, H. Zhu, RSC Adv. 2014, 4,
Conclusion
We have shown microwave irradiation methods to be a practical
and simple method for the synthesis of a range of functionalised
and unfunctionalised imines. Unlike traditional methodologies
requiring catalysts, long reaction times, or multiple purification
steps, our method allows fast conversion times, no workup or
purification steps, and quantitative conversions in most cases
tested. Extending this method to ketones proved largely
unsuccessful; however, further work on the addition of catalysts
and a wider range of starting materials and amines is being
investigated.
(e) G. Zhang, S. K. Hanson, Org. Lett. 2013, 15, 650. doi:10.1021/
(f) H. Tian, X. Yu, Q. Li, J. Wang, Q. Xu, Adv. Synth. Catal. 2012, 354,
(g) A. Maggi, R. Madsen, Organometallics 2012, 31, 451.
(h) L. Jiang, L. Jin, H. Tian, X. Yuan, X. Yu, Q. Xu, Chem. Commun.
(i) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed.
[3] (a) J. Huang, L. Yu, L. He, Y.-M. Liu, Y. Cao, K.-N. Fan, Green Chem.
Experimental
(b) Y. Xiang, Q. Meng, X. Li, J. Wang, Chem. Commun. 2010, 46,
Apparatus, Materials, and Measurements
[4] R. D. Patil, S. Adimurthy, Asian J. Org. Chem. 2013, 2, 726.
[5] (a) J. H. Billman, K. M. Tai, J. Org. Chem. 1958, 23, 535. doi:10.1021/
All chemicals used were obtained from commercial suppliers
and used as received with the exception of aniline, which was
purified by distillation. Dichloromethane was taken from an
MBRAUN SPS-800 solvent purification system and stored over
(b) W. A. White, H. Weingarten, J. Org. Chem. 1967, 32, 213.
1
4 A molecular sieves before use. H and 13C NMR spectra were
˚
recorded on a Bruker Avance DRX 400 spectrometer at 400 (1H)
and 100 MHz (13C), or a Bruker Avance DPX 300 spectrometer
at 300 (1H) and 75 MHz (13C). Mass spectrometric data were
determined on an Agilent 6540 UHD Accurate Mass Q-TOF
liquid chromatography mass spectrometer or with an Agilent
1200 Series HPLC, with the mass spectrometer fitted with an
Agilent Jet Stream source. A CEM Discover Labmate micro-
wave reactor operating at a maximum of 300 W was used.
(c) F. H. Westheimer, K. Taguchi, J. Org. Chem. 1971, 36, 1570.
(e) G. Liu, D. A. Cogan, T. D. Owens, T. P. Tang, J. A. Ellman, J. Org.
[6] (a) R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge,
(b) P. Cledera, J. D. Sa´nchez, E. Caballero, T. Yates, E. G. Ram´ırez,
C. Avendan˜o, M. T. Ramos, J. C. Mene´ndez, Synthesis 2007, 2007,
3390.
General Procedure for Compounds (1–32)
˚
A microwave vial containing 3 A molecular sieves (160–
¨
[7] (a) G. Oztu¨rk, M. C¸ olak, N. Demirel, Chirality 2011, 23, 374.
220 mg) and dry DCM (3 mL) was stirred. The selected amine
(2 mmol) and the chosen aldehyde (2 mmol) were added con-
secutively and the microwave vial was capped. The resulting
mixture was reacted in a microwave reactor at 508C (maximum
of 300 W) for 10 min, unless otherwise stated. The reaction
mixture was filtered and the solvent removed under vacuum to
yield the desired product.
(b) R. S. Varma, R. Dahiya, S. Kumar, Tetrahedron Lett. 1997, 38,
(c) R. S. Varma, R. Dahiya, Synlett 1997, 1997, 1245. doi:10.1055/
(d) J. F. Collados, E. Toledano, D. Guijarro, M. Yus, J. Org. Chem.
(e) S. Das, V. K. Das, L. Saikia, A. J. Thakur, Green Chem. Lett. Rev.
(f) V. Pandey, V. Chawla, S. Saraf, Med. Chem. Res. 2012, 21, 844.
Supplementary Material
1
Full experimental details and the H and 13C NMR spectra of
compounds 1–13, 15–16, and 25–32 can be found on the
Journal’s website.
(g) M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan, J. Thanusu,
Res.
Chem.
Intermed.
2007,
33,
541.