10.1002/anie.201913730
Angewandte Chemie International Edition
COMMUNICATION
C(sp3)−Pd(II) intermediate in
Mechanistic studies have revealed this event to be
a Pd(0)/Pd(II) catalytic cycle.
Mr. Kenneth DeBacker for the preparation and purification of
some of the starting materials. Financial support for this work
came from the University of Chicago, the National Institutes of
Health (R01-GM132570) and Bristol-Myers Squibb (graduate
fellowship to P. H.).
a
stereoinvertive process, with reaction probes revealing wide
scope in substrate and nucleophile. Specific applications have
ultimately afforded short and enantioselective total syntheses of
two sesquiterpenes in the botrydial family. Further efforts to
extend this reaction process and apply it to other complex
molecules, as well as to develop additional means of terminating
functionalization, are the subject of current endeavors.
Keywords: catalysis • Pd • oxygenation • total synthesis •
triquinanes
[1]
[2]
For selected reviews, see: (a) G. Mehta, A. Srikrishna, Chem. Rev.
1997, 97, 671. (b) I. G. Collado, A. J. M. Sánchez, J. R. Hanson, Nat.
Prod. Rep. 2007, 24, 674.
Me
Me
a) LDA,
Mander's
reagent;
H
H
Me
Me
Me
Me
CO2Me
LDA, Tf2O
(79%)
O
OTf
For isolation, see: (a) F. Bohlmann, C. Zdero, J. Jakupovic, H.
Robinson, R. M. King, Phytochemistry, 1981, 20, 2239; (b) R. M.
Coates, Z. Ho, M. Klobus, S. R. Wilson. J. Am. Chem. Soc. 1996, 118,
9249. For a review discussing the biosynthesis and chemical synthesis
of the presilphiperfolanol family, in particular, see: (c) Hong, A. Y.;
Stoltz, B. M. Angew. Chem. Int. Ed. 2014, 53, 5248.
Me
Me
54
55
b) Pd(OAc)2,
t-BuMePhos,
n-Bu4NOAc
(67%)
[3]
[4]
P. Hu, S. A. Snyder, J. Am. Chem. Soc. 2017, 139, 5007.
Me
Me
(a) R. Grigg, J. M. Sansano, V. Santhakumar, V. Sridharan, R.
Thangavelanthum, M. Thornton-Pett, D. Wilson, Tetrahedron 1997, 53,
11803; (b) L. E. Overman, M. M. Abelman, D. J. Kucera, V. D. Tran, D.
J. Ricca, Pure Appl. Chem. 1992, 64, 1813.
H
H
Me
Me
c) K2CO3
Me
CO2Me
OTBS
CO2Me
OAc
Me
d) TBSCl
(77% overall)
Me
Me
56
[5]
For selected reviews on such reactions and subsequent
functionalizations, see: (a) E. Negishi, C. Copéret, S. Ma, S.-Y. Liou, F.
Liu, Chem. Rev. 1996, 96, 365; (b) R. Grigg, V. Sridharan, J.
Organomet. Chem. 1999, 576, 65; (c) D. A. Petrone, J. Ye, M. Lautens,
Chem. Rev. 2016, 116, 8003; (d) Y. Ping, Y. Li, J. Zhu, W. Kong,
Angew. Chem. Int. Ed. 2019, 58, 1562. For selected examples of
recent cyclization and functionalization chemistry, see: (e) B. Burns, R.
Grigg, V. Santhakumar, V. Sridharan, P. Steven, T. Worakun,
Tetrahedron 1992, 48, 7297; (f) S. G. Newman , M. Lautens J. Am.
Chem. Soc. 2011, 133, 1778; (g) H. Liu, C. Li, D. Qiu, X. Tong, J. Am.
Chem. Soc. 2011, 133, 6187; (h) C. Chen, L. Hou, M. Cheng, J. Su, X.
Tong, Angew. Chem. Int. Ed. 2015, 54, 3092; (i) H. Zheng, Y. Zhu, Y.
Shi, Angew. Chem. Int. Ed. 2014, 53, 11280; (j) W. Kong, Q. Wang, J.
Zhu, J. Am. Chem. Soc. 2015, 137, 16028; (k) W. Kong, Q. Wang, J.
Zhu, Angew. Chem. Int. Ed. 2016, 55, 9714; (l) Z. Jiang, L. Hou, C. Ni,
J. Chen, D. Wang, X. Tong, Chem. Commun. 2017, 53, 4270; (m) A.
Liu, X. Ji, B. Zhou, Z. Wu, Y. Zhang, Angew. Chem. Int. Ed. 2018, 57,
3233; (n) Y. Hosoya, I. Kobayashi, K. Mizoguchi, M. Nakada, Org. Lett.,
2019, 21, 8280.
59
e) SeO2
f) Burgess reagent
g) DIBAL-H; TBAF
(47%
overall)
i) K2CO3 (60%)
Me
Me
H
Me
OH
OH
O
Me
Me
Me
O
Me
60
Me
57
(29%)
(62% brsm)
h) Swern [O]
(45%)
j) SeO2
Me
Me
O
O
Me
Me
Me
Me
O
O
Me
Me
58: ent-10-oxodehydrodi-
3: botrydienal
hydrobotrydial
[6]
H.-W. Fehlhaber, R. Geipel, H.-J. Mercker, R. Tschesche, K. Welmar, F.
Schönbeck, Chem. Ber. 1974, 107, 1720.
Scheme
3. Total synthesis
of botrydienal (3) and
ent-10-
oxodehydrodihydrobotrydial (58) via the Pd-catalyzed cyclization cascade.
Reaction conditions: a) LDA (3.0 equiv), THF, -78 to 0 °C, 1.5 h, then HMPA
(3.0 equiv), Manders' reagent (3.3 equiv), THF, -78 °C, 1 h, then LDA (10
equiv), Tf2O (10 equiv), -78 °C, 4 h, 79%; b) Pd(OAc)2 (10 mol %), t-
BuMephos (15 mol %), n-Bu4NOAc (3.0 equiv), EtOAc, 90 °C, 12 h, 67%; c)
K2CO3 (10 equiv), MeOH, 23 °C, 10 h, 84%; d) TBSCl (1.5 equiv), imidazole
(1.6 equiv), DMF, 23 °C, 12 h, 92% e) SeO2 (4.0 equiv), 1,4-dioxane, 110 °C,
12 h, 49%, and 25% aromatization product; f) Burgess reagent (3.0 equiv),
toluene, 80 °C, 12 h, 96%; g) DIBAL-H (3.0 equiv), CH2Cl2, 0 °C, 1 h, then
TBAF (3.0 equiv), 3 h, 99%; h) (COCl)2 (20 equiv), DMSO (10 equiv), Et3N (30
equiv), CH2Cl2, -78 °C, 3 h, 45%; i) K2CO3 (1.05 equiv), MeOH, 23 °C, 10 h,
60%; j) SeO2 (4 equiv), 1,4-dioxane, 110 °C, 12 h, 29%, 62% b.r.s.m.
[7]
[8]
T. Kimata, M. Natsume, S. Marumo, Tetrahedron Lett. 1985, 26, 2097.
For reviews, see: (a) E. Negishi (ed.), Handbook of Organopalladium
Chemistry for Organic Synthesis, Wiley, 2003; (b) T. W. Lyons, M. S.
Sanford, Chem. Rev. 2010, 110, 1147; (c) R. I. McDonald, G. Liu, S. S.
Stahl, Chem. Rev. 2011, 111, 2981; (d) D. A. Petrone, J. Ye, M. Lautens,
Chem. Rev. 2016, 116, 8003; (e) J. He, M. Wasa, K. S. L. Chan, Q.
Shao, J.-Q. Yu, Chem. Rev. 2017, 117, 8754; (f) Y. Xu, G. Dong, Chem.
Sci. 2018, 9, 1424; (g) Y. Ping, Y. Li, J. Zhu, W. Kong, Angew. Chem.
Int. Ed. 2019, 58, 1562. For selected examples, see: (h) L. V. Desai, K.
L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 9542; (i) R. Giri,
J. Liang, J. Lei, J. Li, D. Wang, X. Chen, I. C. Naggar, C. Guo, B. M.
Foxman, J.-Q. Yu, Angew. Chem. Int. Ed. 2005, 44, 7420; (j) N. M.
Camasso, M. H. Pérez-Temprano, M. S. Sanford, J. Am. Chem. Soc.
2014, 136, 12771.
[9]
P. Hu, H. M. Chi, K. C. Debacker, X. Gong, J. H. Keim, I. T. Hsu, S. A.
Snyder, Nature, 2019, 569, 703.
Acknowledgements
[10] In perhaps the closest example to this process, the Mulzer group
reported a Pd-catalyzed cyclization and C−O bond formation reaction
on an advanced intermediate in their studies towards bielschowskysin.
However, they utilized ligand-free conditions significantly different from
We thank Dr. Antoni Jurkiewicz and Dr. C. Jin Qin for assistance
with NMR and mass spectrometry, respectively. We also thank
This article is protected by copyright. All rights reserved.