C O M M U N I C A T I O N S
Table 2. Enantioselective Claisen Rearrangements Catalyzed by
2a
Figure 2. (a) ORTEP plot (50% probability ellipsoids for non-hydrogen
atoms) of the guanidinium ion 2 (counterion omitted for clarity) as a complex
with two isopropanol molecules. (b) Fully optimized, lowest-energy
transition structure for the N,N′-dimethylguanidinium-promoted Claisen
rearrangement of 9 at the B3LYP/6-31G(d) level of theory.
chiral guanidinium ions as hydrogen-bond donor catalysts in other
reactions is the focus of ongoing studies.
Acknowledgment. This work was supported by the NIGMS
(Grant GM-43214). We thank Dr. Eric Ashley for helpful discussions
and Dr. Douglas Ho for carrying out the X-ray structural analysis.
Supporting Information Available: Complete ref 12; complete
experimental procedures, summary of catalyst optimization studies, and
characterization data for new compounds. This material is available free
References
(1) For reviews:(a) Lee, A. Y.; Stewart, J. D.; Clardy, J.; Ganem, B Chem. Biol
1995, 2, 195–203. (b) Ganem, B. Angew. Chem., Int. Ed. 1996, 35, 936–
945.
(2) Gajewski, J. J.; Jurayj, J.; Kimbrough, D. R.; Gande, M. E.; Ganem, B.;
Carpenter, B. K. J. Am. Chem. Soc. 1987, 107, 1170–1186.
(3) For a review:(a) Gajewski, J. J. Acc. Chem. Res. 1997, 30, 219–225.
(4) Severance, D. L.; Jorgensen, W. L. J. Am. Chem. Soc. 1992, 114, 10966–
10969.
(5) (a) Curran, D. P.; Kuo, L. H. Tetrahedron Lett. 1995, 36, 6647–6650. (b)
Kirsten, M.; Rehbein, J.; Hiersemann, M.; Strassner, T. J. Org. Chem. 2007,
72, 4001–4011.
a Reactions run on a 0.1 mmol scale in 2 mL of hexanes. b The
absolute configuration for entry 2 was established by comparison to
material prepared with [Cu{(S,S)-t-butylbox}](H2O)(SbF6)2 (ref 6i); all
other products assigned by analogy. c Isolated yields after column
chromatography. d Diastereomeric ratios determined by 1HNMR.
e Enantiomeric excesses determined by GC or HPLC analysis using
commercial chiral columns (see Supporting Information).
(6) (a) Maruoka, K.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117,
1165–1166. (b) Tayama, E.; Saito, A.; Ooi, T.; Maruoka, K. Tetrahedron
2002, 58, 8307–8312. (c) Kazmaier, U.; Mues, H.; Krebs, A Chem.sEur.
J. 2002, 8, 1850–1855. (d) Corey, E.; Lee, D.-H. J. Am. Chem. Soc. 1991,
113, 4026–4028. (e) Ito, H.; Sato, A.; Taguchi, T. Tetrahedron Lett. 1997,
38, 4815–4818. (f) Ito, H.; Sato, A.; Kobayashi, T.; Taguchi, T. Chem.
Commun. 1998, 2441–2442. (g) Yoon, T. P.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2001, 123, 2911–2912. (h) Abraham, L.; Czerwonka, R.;
Hiersemann, M. Angew. Chem., Int. Ed. 2001, 40, 4700–4703. (i) Abraham,
L.; Ko¨rner, M.; Schwab, P.; Hiersemann, M. AdV. Synth. Catal. 2004, 346,
1281–1294.
anti stereochemical relationship predicted by a six-membered chairlike
transition state. Quaternary stereogenic centers could also be generated
with good stereocontrol (Table 2, entries 7 and 8).
(7) (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520–
1543. (b) Doyle, A. G.; Jacobsen, E. N. Chem. ReV. 2007, 107, 5713–
5743.
(8) Of the salts evaluated, only guanidinium ions associated to the non-coordinating
BArF counterion were found to be effective. See Supporting Information.
(9) (a) Coates, R. M.; Rogers, B. D.; Hobbs, S. J.; Peck, D. R.; Curran, D. P.
J. Am. Chem. Soc. 1987, 109, 1160–1170. (b) Cramer, C. J.; Truhlar, D. G.
J. Am. Chem. Soc. 1992, 114, 8794–8799. (c) Sehgal, A.; Shao, L.; Gao,
J. J. Am. Chem. Soc. 1995, 117, 11337–11340.
(10) For examples of asymmetric catalysis using chiral guanidines, see:(a) Ishikawa,
T.; Kumamoto, T. Synthesis 2006, 5, 737–753. (b) Sohtome, Y.; Hashimoto,
Y.; Nagasawa, K. Eur. J. Org. Chem. 2006, 13, 2894–2897. (c) Shen, J.;
Nguyen, T. T.; Goh, Y.-P.; Ye, W.; Fu, X.; Xu, J.; Tan, C.-H. J. Am. Chem.
Soc. 2006, 128, 13692–13693. (d) Terada, M.; Nakano, M.; Ube, H. J. Am.
Chem. Soc. 2006, 128, 16044–16045. (e) Terada, M.; Sorimachi, K. J. Am.
Chem. Soc. 2007, 129, 292–293.
(11) All of the substrates for the asymmetric Claisen rearrangement were synthesized
from the corresponding R-ketoacids with complete selectivity for the Z-enol
ether by a simple two-step procedure involving O-alkylation and methyl ester
formation.
(12) DFT calculations were performed using Gaussian 98: Frisch, M. J.; et.al.
Gaussian 98, Gaussian, Inc.: Pittsburgh, PA, 2002.
X-ray structural analysis of 2, recrystallized from an isopropanol/
water solvent mixture, reveals a guanidinium functionality disposed
in a pseudo-C2-symmetric (Z,Z) conformation and hydrogen-bonded
to two isopropanol molecules (Figure 1, 2a). DFT studies were
conducted to probe the mode of catalyst interaction in the transition
state of the Claisen rearrangement of representative substrate 9.12
Calculations were performed using a simplified N,N′-dimethylguani-
dinium ion catalyst, and the lowest energy transition structure identified
is depicted in Figure 2b. Transition state stabilization via hydrogen-
bonding interactions between catalyst and both the ether- and ester
carbonyl-derived oxygens are evident. As expected, the computed
transition structure of the catalyzed reaction bears greater charge
separation between the allyl and oxallyl fragments relative to the
transition structure of the uncatalyzed thermal rearrangement.
(13) (a) A pKa of 14.1 for 2 in DMSO was measured according to the procedure
of Bordwell: Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.;
Cornforth, F. J.; Drucker, G. E; Margolin, Z.; McCallum, R. J.; McCollum,
G. J; Varnier, N. R. J. Am. Chem. Soc. 1975, 97, 7006–7014. (b) Bordwell
measured a pKa of 13.5 for N,N′-diphenylthiourea in DMSO: Bordwell, F. G.;
Algrim, D. J.; Harrelson, J. A., Jr. J. Am. Chem. Soc. 1988, 110, 5903-5904.
Although guanidinium BArF species have approximately the same
equilibrium acidity as N,N′-diarylthioureas,13 they possess superior
catalytic activity in all of the Claisen rearrangements we have studied
to date. The basis for this unexpected difference and application of
JA803370X
9
J. AM. CHEM. SOC. VOL. 130, NO. 29, 2008 9229