C O M M U N I C A T I O N S
Scheme 2. Diastereoselective Intramolecular Michael Addition and
ORTEP Representation of Keto Sulfone 3
tion of Heathcock’s original conditions [t-BuOK (6 equiv), Ph2CO
(18 equiv), PhH, 110 °C, sealed tube, 50 min].5d These improved
conditions suppressed a retro-Michael pathway that competitively
produced the tricycle 20. Finally, reduction using Stryker’s reagent14
yielded 1, which matched the reported spectral data.5f,15 Impor-
tantly, comparison of the optical rotation {[R]D ) -23.2° (c )
0.22, 100% EtOH)} with the literature value16 {[R]D ) -24.5° (c
) 1.10, 100% EtOH)} allowed us to confirm the assigned absolute
configuration of 1.
In conclusion, we have completed the first enantioselective total
synthesis of lycopodine. This approach should open the door to
accessing other lycopodium alkaloids. Further synthetic studies will
be reported in due course.
Acknowledgment. Financial support was provided by the
National Institutes of Health (GM63723). The authors would like
to thank Professor Clayton Heathcock (UC-Berkeley) for providing
an authentic sample of 1 and Professor Max Deinzer and Dr. Jeff
Morre´ (OSU) for mass spectral data. Finally, the authors are grateful
to Professor James D. White (OSU), Professor Paul R. Blakemore
(OSU), and Dr. Roger Hanselmann (Rib-X Pharmaceuticals) for
helpful discussions.
Supporting Information Available: Complete experimental pro-
1
cedures, including H and 13C spectra, for all of the new compounds,
and crystallographic data and CIF files for 3 and 19. This material is
Scheme 3. Total Synthesis of Lycopodine
References
(1) (a) Kobayashi, J.; Morita, H. Alkaloids 2005, 61, 1–57. (b) Ma, X.; Gang,
D. R. Nat. Prod. Rep. 2004, 21, 752–772.
(2) (a) Bo¨deker, K. Justus Liebigs Ann. Chem. 1881, 208, 363. (b) Achma-
towicsz, O.; Uzieblo, W. Rocz. Chem. 1938, 18, 88–95. (c) Ayer, W. A.;
Iverach, G. G. Tetrahedron Lett. 1962, 87–92. (d) Rogers, D.; Quick, A.;
Hague, M. Acta Crystallogr. 1974, B30, 552–553. (e) Hague, M.; Rogers,
D. J. Chem. Soc., Perkin Trans. 2 1975, 93–98.
(3) Nikonorow, M. Acta Pol. Pharm. 1939, 3, 23–56.
(4) Ortega, M. G.; Agnese, A. M.; Cabrera, J. L. Phytomedicine 2004, 11,
539–543.
(5) (a) Stork, G.; Kretchmer, R. A.; Schlessinger, R. H. J. Am. Chem. Soc.
1968, 90, 1647–1648. (b) Ayer, W. A.; Bowman, W. R.; Joseph, T. C.;
Smith, P. J. Am. Chem. Soc. 1968, 90, 1648–1650. (c) Kim, S.; Bando, Y.;
Horii, Z. Tetrahedron Lett. 1978, 2293–2294. (d) Heathcock, C. H.;
Kleinman, E. F.; Binkley, E. S. J. Am. Chem. Soc. 1982, 104, 1054–1068.
(e) Schumann, D.; Mueller, H. J.; Naumann, A. Liebigs Ann. Chem. 1982,
1700–1705. (f) Kraus, G. A.; Hon, Y. S. Heterocycles 1987, 25, 377–386.
(g) Grieco, P. A.; Dai, Y. J. Am. Chem. Soc. 1998, 120, 5128–5129. For
formal syntheses of lycopodine, see: (h) Padwa, A.; Brodney, M. A., Jr.;
Sheehan, S. M. J. Org. Chem. 1997, 62, 78–87. (i) Mori, M.; Hori, K.;
Akashi, M.; Hori, M.; Sato, Y.; Nishida, M. Angew. Chem., Int. Ed. 1998,
37, 637–638.
(6) Boulet, S. L.; Paquette, L. A. Synthesis 2002, 895–900.
(7) Zhou, X.-T.; Carter, R. G. Angew. Chem., Int. Ed. 2006, 45, 1787–1790.
(8) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem.
Soc. 2000, 122, 8168–8179.
(9) We purchased 10 (70% pure) from Aldrich Flavors and Fragrances (Aldrich
cat. no. W341703, 25 g, $92). The impurity (mesityl oxide) did not affect
the performance of the cross metathesis. Alternate sources of 10 were
significantly higher in cost and less pure.
(10) (a) Padwa, A.; Bullock, W. H.; Dyszlewski, A. D. Tetrahedron Lett. 1987,
28, 3193–3196. (b) Ogura, K.; Iihama, T.; Kiuchi, S.; Kajiki, T.; Koshikawa,
O.; Takahashi, K.; Iida, H. J. Org. Chem. 1986, 51, 700–705. (c) Lin, P.;
Whitman, G. H. J. Chem. Soc., Chem. Commun. 1983, 1102–1103. (d)
Baechler, R. D.; Bentley, P.; Deuring, L.; Fisk, S. Tetrahedron Lett. 1982,
23, 2269–2272. For Pd-catalyzed methods, see: (e) Jagusch, T.; Gais, H.-
J.; Bondarev, O. J. Org. Chem. 2004, 69, 2731–2736, and references cited
within.
followed by reorganization to the sulfone 18.12,13 Subsequent
conversion to the C13,14 enamine followed by reprotonation would
generate the penultimate intermediate 18. Final Mannich cyclization
would yield the tricycle 19. Presumably, this net 1,3-shift of the
phenyl sulfone moiety generates a more reactive intermediate for
the key Mannich cyclization. Completion of a formal synthesis of
lycopodine was accomplished by desulfurization using Na/Hg
amalgam in good yield to give the known tricycle 20.5e Attempts
to follow Schumann’s outlined route for alkylation of 20 with
3-bromopropan-1-ol gave disappointing results.5e Fortunately, alky-
lation with the 3-iodo variant proved effective (68% yield over 2
steps). The final cyclization was performed using a slight modifica-
(11) The heterolytic cleavage would appear unlikely given the tethered nucleo-
phile in the form of the silyl enol ether.
(12) (a) Hatanaka, N.; Ozaki, O.; Matsumoto, M. Tetrahedron Lett. 1986, 27,
3169–3172. Also see: (b) Knight, D. J.; Whitman, G. H.; Williams, J. G.
J. Chem. Soc., Perkin Trans. 1 1987, 2149–2152.
(13) A fourth option, involving formation of an intermediate 1,1-dioxothietane
followed by ring opening, also exists.
(14) Mahoney, W. S.; Stryker, J. M. J. Am. Chem. Soc. 1989, 111, 8818–8823.
(15) Nakashima, T. T.; Singer, P. P.; Browne, L. M.; Ayer, W. A. Can. J. Chem.
1975, 53, 1936–1942.
(16) Douglas, B.; Lewis, D. G.; Marion, L. Can. J. Chem. 1953, 31, 272–276.
JA803613W
9
J. AM. CHEM. SOC. VOL. 130, NO. 29, 2008 9239