ORGANIC
LETTERS
2008
Vol. 10, No. 16
3631-3634
Gold-Catalyzed Cycloisomerization of
N-Propargylindole-2-carboxamides:
Application toward the Synthesis of
Lavendamycin Analogues
Dylan B. England and Albert Padwa*
Department of Chemistry, Emory UniVersity, Atlanta, Georgia 30322
Received June 19, 2008
ABSTRACT
A series of N-propargylindole-2-carboxamides were found to undergo a AuCl3-catalyzed cycloisomerization to give ꢀ-carbolinones in high
yield. The corresponding ꢀ-chlorocarboline derivative was prepared and used for Pd(0)-catalyzed cross-coupling chemistry directed toward
the synthesis of lavendamycin analogues.
The number of reports describing the utility of gold
complexes as homogeneous catalysts for the formation of
C-X and C-C bonds has dramatically increased in recent
years.1 Gold catalysts can be considered as powerful soft
Lewis acids for the activation of C-C triple bonds toward
nucleophilic attack.2 A variety of nucleophilic reagents, such
as H2O/alcohols,3 alkynes,4 azides,5 and carbonyl groups,6
have been utilized. These catalytic cyclization reactions
generally proceed under extremely mild conditions and are
characterized by high turnover numbers. Gold complexes are
also particularly active in promoting the intermolecular and
intramolecular hydroarylation of alkynes7 and allenes.8
Recently, the Echavarren group reported that indoles react
intramolecularly with alkynes in the presence of gold
catalysts to give six- to eight-membered ring annulated
(1) For some recent reviews of gold chemistry, see: (a) Dyker, G. Angew.
Chem., Int. Ed. 2000, 39, 4237. (b) Hofmann-Roder, A.; Krause, N. Org.
Biomol. Chem. 2005, 3, 387. (c) Zhang, L.; Sun, J.; Kozmin, S. A. AdV.
Synth. Catal. 2006, 348, 2271. (d) Hashmi, A. S. K.; Hutchings, G. J. Angew.
Chem., Int. Ed. 2006, 45, 7896. (e) Jime´nez-Nun˜ez, E.; Echavarren, A. M.
Chem. Commun. 2007, 333. (f) Hashmi, A. S. K. Catal. Today 2007, 122,
211. (g) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180. (h) Gorin, D. J.;
Toste, F. D. Nature 2007, 446, 395.
(2) (a) Hashmi, A. S. K. Gold Bull. 2003, 36, 3. (b) Echavarren, A. M.;
Nevado, C. Chem. Soc. ReV. 2004, 33, 431. (c) Bruneau, C. Angew. Chem.,
Int. Ed. 2005, 44, 2328.
(5) (a) Fukuda, Y.; Utimoto, K. Synthesis 1991, 975. (b) Arcadi, A.; Di
Giuseppe, S.; Marinelli, F.; Rossi, E. AdV. Synth. Catal. 2001, 343, 443.
(c) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127,
11260.
(3) (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729. (b) Teles,
J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415. (c)
Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem.
Soc. 2003, 125, 11925. (d) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka,
M. Angew. Chem., Int. Ed. 2002, 41, 4563.
(6) (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J. H.; Frost, T. M. Angew.
Chem., Int. Ed. 2000, 39, 2285. (b) Asao, N.; Takahashi, K.; Lee, S.;
Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. (c) Asao,
N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458. (d)
Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164.
(7) (a) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167. (b) Lalonde,
R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007,
129, 2452.
(4) (a) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc.
2000, 122, 11553. (b) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D.
J. Am. Chem. Soc. 2004, 126, 4526. (c) Staben, S. T.; Kennedy-Smith, J. J.;
Toste, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350. (d) Zhang, L.; Kozmin,
S. A. J. Am. Chem. Soc. 2004, 126, 11806. (e) Zhang, L.; Kozmin, S. A.
J. Am. Chem. Soc. 2005, 127, 6962. (f) Gagosz, F. Org. Lett. 2005, 7, 4129.
(g) Fu¨rstner, A.; Morency, L. Angew. Chem., Int. Ed. 2008, 47, 5030.
(8) (a) Widenhoefer, R. A. Pure Appl. Chem. 2004, 76, 671. (b) Liu,
C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935. (c) Zhang, Z.; Bender,
C. F.; Widenhoefer, R. A. Org. Lett. 2007, 9, 2887.
10.1021/ol801385h CCC: $40.75
Published on Web 07/16/2008
2008 American Chemical Society