S. J. Singh, R. V. Jayaram / Tetrahedron Letters 49 (2008) 4249–4251
4251
O
O
100%
0%
OH
OH
O
O
O
O
O
1 mmol
1 mmol
NaLa TiO4 (10 mol%)
CH2Cl2, reflux
+
O
O
O
1 mmol
O
Scheme 2. NaLaTiO4-mediated chemoselective O-tert-butoxycarbonylation of hydroxy compounds.
Bosco, M.; Carlone, A.; Dalpozzo, R.; Locatelli, M.; Melchiorre, P.; Palazzi, P.;
Sambri, L. Synlett 2006, 2104–2108.
5. Chen, C. T.; Kuo, J. H.; Pawar, V. D.; Munot, Y. S.; Weng, S. S.; Ku, C. H.; Liu, C. Y. J.
Org. Chem. 2005, 70, 1188–1197.
6. Chen, C. T.; Kuo, J. H.; Li, C. H.; Barhate, N. B.; Hon, S. W.; Li, T. W.; Chao, S. D.;
Liu, C. C.; Li, Y. C.; Chang, I. H.; Lin, J. S.; Liu, C. J.; Chou, Y. C. Org. Lett. 2001, 3,
3729–3732.
proceeded smoothly under the present reaction conditions provid-
ing 2-naphthyl tert-butyl carbonate in 91% yield within 6.6 h
(Table 2, entry 18). Thus, the methodology was able to tolerate
both steric and electronic variations on the aryl alcohols under
the adopted reaction conditions.
We further investigated the reusability of the catalyst by sepa-
rating it from the reaction mass by filtration. After separation, the
catalyst was washed with acetone followed by diethyl ether and
heated at 150 °C for 2 h before the next cycle. The catalyst was
found to be reusable for up to six consecutive cycles with no signif-
icant loss in activity (Table 2, entry 1).
The scope of this methodology was further extended by inves-
tigating the possible chemoselectivity of the NaLaTiO4-mediated
O-tert-butoxycarbonylation by carrying out competitive reactions
of alcohols and phenol (Scheme 2). It was found that phenol
reacted exclusively in the presence of n-octyl alcohol or cyclohexyl
alcohol which was confirmed by GC and GC–MS analysis of the
reaction mixture. Thus, the protocol may be useful in the multistep
synthesis of bulky organic molecules wherein phenolic hydroxy
groups are to be protected selectively in the presence of saturated
alcoholic hydroxy functionalities, which either do not contain aryl
substituents or have them at remote sites.
7. Veldurthy, B.; Figueras, F. Chem. Commun. 2004, 734–735.
8. Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2001, 101, 1981–2017.
9. (a) Labhsetwar, N. K.; Watanabe, A.; Mitsuhashi, T. Appl. Catal. B 2003, 40, 21–
30; (b) Bedel, L.; Roger, A. C.; Rehspringer, J. L.; Zimmermann, Y.; Kiennemann,
A. J. Catal. 2005, 235, 279–294; (c) Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.;
Uenishi, M.; Kimura, M.; Okamoyo, T.; Hamada, N. Lett. Nat. 2002, 418, 164–
167; (d) Zhang, R.; Alamdari, H.; Kaliaguine, S. J. Catal. 2006, 242, 241–253; (e)
Pai, M. R.; Wani, B. N.; Sreedhar, B.; Singh, S.; Gupta, N. M. J. Mol. Catal. A 2006,
246, 128–135; (f) Royer, S.; Berube, F.; Kaliaguine, S. Appl. Catal. A 2005, 282,
273–284.
10. (a) Kulkarni, A. S.; Jayaram, R. V. Appl. Catal. A 2003, 252, 225–230; (b) Kulkarni,
A. S.; Jayaram, R. V. J. Mol. Catal. A 2004, 223, 107–110.
11. Lohmann, S.; Andrews, S. P.; Burke, B. J.; Smith, M. D.; Attfield, J. P.; Tanaka, H.;
Kaneko, K.; Ley, S. V. Synlett 2005, 1291–1295.
12. Smith, M. D.; Stepan, A. F.; Ramarao, C.; Brennan, P. E.; Ley, S. V. Chem. Commun.
2003, 2652–2653.
13. (a) Blasse, G. J. Inorg. Nucl. Chem. 1968, 30, 656–658; (b) Byeon, S. H.; Park, K.;
Itoh, M. J. Solid State Chem. 1996, 121, 430–436; (c) Toda, K.; Kameo, Y.; Kurita,
S.; Sato, M. J. Alloys Compd. 1996, 234, 19–25.
14. Typical procedure for the preparation of NaLaTiO4: Stoichiometric amounts of
La2O3 (preheated at 900 °C for 12 h), TiO2 and 20% excess of Na2CO3 were
mixed and heated slowly up to 800 °C in
a platinum crucible and the
temperature was kept constant for 12 h in air. The resulting powder was
ground and heated at 900 °C for 2 days with two intermittent grindings and
In conclusion, we have developed a simple, efficient and chemo-
selective protocol for the O-tert-butoxycarbonylation of hydroxy
compounds using NaLaTiO4 as a novel heterogeneous catalyst.
The methodology offers several advantages such as use of a heter-
ogeneous and reusable catalyst, high chemoselectivity, greater
substrate compatibility, high reaction rates, operational simplicity
and mild reaction conditions. Further work is in progress to
explore this novel catalyst for use in other organic transformations.
cooled in
a furnace. Twenty percent excess of Na2CO3 was added while
grinding to compensate for the loss of the volatile sodium component. The
resulting product was washed with distilled water and dried at 120 °C.
15. (a) Byeon, S. H.; Yoon, J. J.; Lee, S. O. J. Solid State Chem. 1996, 127, 119–122; (b)
Schaak, R. E.; Mallouk, T. E. J. Solid State Chem. 2001, 161, 225–232.
16. General procedure for the O-tert-butoxycarbonylation of hydroxy compounds: To a
dried 10 mL round-bottomed flask containing 1 mmol of alcohol was added
1.1 mmol of Boc2O followed by 0.1 mmol of NaLaTiO4 and finally 1 mL of
CH2Cl2. The mixture was stirred under reflux. The reaction was monitored by
TLC and GC. After the appropriate time, the reaction mixture was cooled to
room temperature and the catalyst was separated by filtration. The products
were characterized using GC/GC–MS.
References and notes
17. Spectral data of selected products: Table 2, entry 2: 1H NMR (300 MHz, CDCl3,
25 °C) d = 1.47 (s, 9H), 3.78 (s, 3H), 5.02 (s, 2H), 6.86 (d, J = 6.6 Hz, Ar 2H), 7.30
(d, J = 6.6 Hz, Ar 2H). 13C NMR (75 MHz, CDCl3, 25 °C) d = 27.7, 55.2, 68.5, 82,
113.8, 127.7, 130.2, 153.5, 159.7. MS (EI, 70 eV): 238 (10) (M+), 181 (24), 137
(52), 121 (100), 57 (30). Table 2, entry 15: 1H NMR (300 MHz, CDCl3, 25 °C)
d = 1.46 (s, 9H), 7.03 (d, J = 7.1 Hz, Ar 2H), 7.24 (d, J = 6.6 Hz, Ar 2H). 13C NMR
(75 MHz, CDCl3, 25 °C) d = 27.6, 83.8, 122.6, 129.4, 131.1, 149.6, 151.5. MS
(EI, 70 eV): 228 (4) (M+), 128 (32), 111 (12), 57 (100). Table 2, entry 16: 1H NMR
(300 MHz, CDCl3, 25 °C) d = 1.56 (s, 9H), 7.15–7.30 (m, Ar 3H), 7.42 (d,
J = 7.8 Hz, Ar 1H). 13C NMR (75 MHz, CDCl3, 25 °C) d = 27.4, 83.9, 123.3, 126.9,
127.7, 130.2, 147.1, 150.7. MS (EI, 70 eV): 228 (3) (M+), 128 (35), 111 (16), 57
(100).
1. (a) Shaikh, A. A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951–976; (b) Parrish, J. P.;
Salvatore, R. N.; Jung, K. W. Tetrahedron 2000, 56, 8207.
2. Mohapatra, D. K. Synlett 2001, 1995–1996.
3. (a) Suryakiran, N.; Prabhakar, P.; Reddy, T. S.; Rajesh, K.; Venkateswarlu, Y.
Tetrahedron Lett. 2006, 47, 8039–8042; (b) Upadhyaya, D. J.; Barge, A.; Stefania,
R.; Cravotto, G. Tetrahedron Lett. 2007, 48, 8318–8322; (c) Bartoli, G.; Bosco, M.;
Locatelli, M.; Marcantoni, E.; Massaccesi, M.; Melchiorre, P.; Sambri, L. Synlett
2004, 1794–1798; (d) Heydari, A.; Shiroodi, R. K.; Hamadi, H.; Esfandyari, M.;
Pourayoubi, M. Tetrahedron Lett. 2007, 48, 5865–5868.
4. (a) Houlihan, F.; Bouchard, F.; Frechet, J. M. J.; Willson, C. G. Can. J. Chem. 1985,
63, 153–162; (b) Basel, Y.; Hassner, A. J. Org. Chem. 2000, 65, 6368–6380; (c)
Hansen, M. M.; Riggs, J. R. Tetrahedron Lett. 1998, 39, 2705–2706; (d) Bartoli, G.;