Alkylations of Pyridyl-Substituted Ynones
A R T I C L E S
Table 1. Screening of Chiral Ligands for Catalytic AA Reactions of
Propargyl Ketone 1a with Et2Zna
heterocyclic compounds, have recently been developed. The
utility of such methods would be elevated by the availability
of a catalytic asymmetric protocol that allows for synthesis of
the requisite substrates in high enantiomeric purity.
(2) The acetylene moiety of the tertiary propargyl alcohols
can be used to synthesize useful heterocyclic structures. For
example, alkyl and alkenyl (cis and trans) tertiary allylic
alcohols would be accessed through catalytic hydrogenation
procedures. Alternatively, deprotonation of a terminal alkyne
may be followed by treatment with a range of electrophiles.
(3) To the best of our knowledge, there are no existing
examples of catalytic AA reactions of pyridyl ketones with
alkylmetal reagents, and enantioselective additions of C-based
nucleophiles to ynones are relatively uncommon.9,10 It should
be noted that the significant majority of catalytic alkylations of
acyclic ketones involve methyl-substituted substrates,4,10,11
presumably to ensure maximum levels of enantioselectivity (due
to optimal size difference between carbonyl substituents).
Our goal was to investigate catalytic AA reactions of pyridyl
ynones through the use of readily accessible and easily
modifiable amino acid-based chiral ligands developed in these
laboratories.12 One class of reactions promoted in the presence
of the aforementioned ligands is catalytic enantioselective
additions of C-based nucleophiles to ketones,13 including Al-
catalyzed cyanide additions of aryl- and alkyl-substituted
unactivated ketones9a and Al-catalyzed AA reactions of R-ke-
toesters with dialkylzinc reagents.14
Results and Discussion
1. Catalytic Asymmetric Alkylation Reactions of Ynones
with Et2Zn. a. Identification of an Effective Chiral Ligand. We
began by probing the ability of several amino acid-based ligands
(5) For pyridyl-substituted tertiary propargyl alcohols that exhibit biologi-
cal activity, see: Starck, J.-P.; Talaga, P.; Que´re´, L.; Collart, P.;
Christophe, B.; Lo Brutto, P.; Jadot, S.; Chimmanada, D.; Zanda, M.;
Wagner, A.; Mioskowski, C.; Massingham, R.; Guyaux, M. Bioorg.
Med. Chem. 2006, 16, 373–377.
a All reactions were performed under a N2 atmosphere; see the
Supporting Information for experimental details. All catalytic alkylations
proceed to >98% conversion. b Enantioselectivities were determined by
chiral HPLC analysis; see the Supporting Information for details. nd )
not determined; abs. conf. ) absolute configuration of major product
enantiomer.
(6) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050–
12051.
(7) (a) Jansen, A.; Krause, N. Synthesis 2002, 1987–1992. (b) Jansen,
A.; Krause, N. Inorg. Chim. Acta 2006, 359, 1761–1766. (c) Yan, B.;
Zhou, Y.; Zhang, H.; Chen, J.; Liu, Y. J. Org. Chem. 2007, 72, 7783–
7786.
(8) Smith, C.; Bynnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett.
2007, 9, 1169–1171.
to catalyze the enantioselective addition of Et2Zn to ynone 1a
in the presence of Al(Oi-Pr)3, a combination formerly identified
as optimal in catalytic alkylations of R-ketoesters.14 Key findings
from initial studies are summarized in Table 1. All transforma-
(9) For catalytic enantioselective additions of C-based nucleophiles to
ynones, see: (a) Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda,
A. H. Angew. Chem., Int. Ed. 2001, 41, 1009–1012. (b) Christensen,
C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
4875–4881. (c) Funabashi, K.; Jachmann, M.; Kanai, M.; Shibasaki,
M. Angew. Chem., Int. Ed. 2003, 42, 5489–5492. (d) Tian, S-K.; Deng,
L. J. Am. Chem. Soc. 2003, 125, 9900–9901.
(12) (a) Cole, B. M.; Shimizu, K. D.; Krueger, C. A.; Harrity, J. P. A.;
Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 1996, 35,
1668–1671. (b) Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Gleason,
J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121,
4284–4285. (c) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am.
Chem. Soc. 2001, 123, 755–756. (d) Porter, J. R.; Traverse, J. F.;
Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984–
985. (e) Luchaco-Cullis, C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda,
A. H. Angew. Chem., Int. Ed. 2001, 40, 1456–1460. (f) Josephsohn,
N. S.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126,
3734–3735. (g) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 4584–4585. (h) Kacprzynski, M. A.; Kazane,
S. A.; May, T. L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187–3190. (i)
Fu, P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130,
5530–5541.
(10) For catalytic enantioselective additions of alkynyl metals to ketones,
see: (a) Cozzi, P. G. Angew. Chem., Int. Ed. 2003, 42, 2895–2898.
(b) Saito, B.; Katsuki, T. Synlett 2004, 1557–1560. (c) Zhou, Y.; Wang,
R.; Xu, Z.; Yan, W.; Liu, L.; Kang, Y.; Han, Z. Org. Lett. 2004, 6,
4147–4149. (d) Liu, L.; Wang, R.; Kang, Y-F.; Chen, C.; Xu, Z-Q.;
Zhou, Y-F.; Ni, M.; Cai, H-Q.; Gong, M-Z. J. Org. Chem. 2005, 70,
1084–1086.
(11) For additional examples, see: (a) Casolari, S. J.; D’Addario, D.;
Tagliavini, E. Org. Lett. 1999, 1, 1061–1063. (b) Waltz, K. M.;
Gavinonis, J.; Walsh, P. J. Angew. Chem., Int. Ed. 2002, 41, 3697–
3699. (c) Prieto, O.; Ra`mon, D. J.; Yus, M. Tetrahedron: Asymmetry
2003, 14, 1955–1957. (d) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004,
126, 6538–6539. (e) Cunningham, A.; Mokal-Parekh, V.; Wilson, C.;
Woodward, S. Org. Biomol. Chem. 2004, 2, 741–748. (f) Teo, Y.-C.;
Goh, J.-D.; Loh, T.-P. Org. Lett. 2005, 7, 2743–2745. (g) Wadamoto,
M.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 14556–14557. (h)
Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128,
12660–12661.
(13) For an example, see: Akullian, L. C.; Snapper, M. L.; Hoveyda, A. H.
J. Am. Chem. Soc. 2006, 128, 6532–6533.
(14) Wieland, L. C.; Deng, H.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 15453–15456.
9
J. AM. CHEM. SOC. VOL. 130, NO. 30, 2008 9943