10.1002/chem.202001815
Chemistry - A European Journal
RESEARCH ARTICLE
247; e) V. H. Le, M. Inai, R. M. Williams, T. Kan, Nat. Prod. Rep. 2015,
32, 328-347.
Conclusion
[2]
See, for instance: a) S. A. Vizer, E. S. Sycheva, A. A. A. Al Quntar, N. B.
Kurmankulov, K. B. Yerzhanov, V. M. Dembitsky, Chem. Rev. 2015, 115,
1475-1502; b) T. Kondo, T.-a. Mitsudo, Chem. Rev. 2000, 100, 3205-
3220; c) P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 2014, 114,
8807-8864; d) V. Tyagi, G. Sreenilayam, P. Bajaj, A. Tinoco, R. Fasan,
Angew. Chem. Int. Ed. 2016, 55, 13562-13566; Angew. Chem. 2016, 128,
13760-13764; e) H. Wang, Q. Lu, C. Qian, C. Liu, W. Liu, K. Chen, A.
Lei, Angew. Chem. Int. Ed. 2016, 55, 1094-1097; Angew. Chem. 2016,
128, 1106-1109; f) H. Li, C. Shan, C.-H. Tung, Z. Xu, Chem. Sci. 2017,
8, 2610-2615; g) C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor, X. Liu,
Chem. Soc. Rev. 2015, 44, 291-314; h) X.-C. Liu, X.-L. Chen, Y. Liu, K.
Sun, Y.-Y. Peng, L.-B. Qu, B. Yu, ChemSusChem 2020, 13, 298-303.
a) K. L. Dunbar, D. H. Scharf, A. Litomska, C. Hertweck, Chem. Rev.
2017, 117, 5521-5577; b) C. Jacob, Nat. Prod. Rep. 2006, 23, 851-863;
c) R. Bentley, Chem. Soc. Rev. 2005, 34, 609-624.
In summary, we describe a simple, inexpensive and highly
chemoselective method for the deoxygenation of sulfoxides. The
method is compatible with many other reducible functional groups
and can be applied at any stage of synthesis, including late stages.
The most important result of this investigation is the use, for the
first time, of a tandem sulfoxide activation and an electrophilic
aromatic substitution as the reduction reaction. The oxidized
functional group, in this case, is a chlorinated aromatic that can
be easily separated from the reaction mixture. The efficiency of
this method was illustrated with more than 45 examples, including
commercial drugs as substrates and as precursors. The
uniqueness of this method might facilitate its application in other
deoxygenations in both industry and academia as well as in the
development of new halogenation reactions. Related studies are
currently ongoing in our laboratory.
[3]
[4]
a) G. E. Poirier, Chem. Rev. 1997, 97, 1117-1128; b) T.-J. Yue, W.-M.
Ren, L. Chen, G.-G. Gu, Y. Liu, X.-B. Lu, Angew. Chem. Int. Ed. 2018,
57, 12670-12674; Angew. Chem. 2018, 130, 12852-12856; c) J. Guo, Y.
Cao, R. Shi, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Angew.
Chem. Int. Ed. 2019, 58, 8443-8447; Angew. Chem. 2019, 131, 8531-
8535.
Experimental Section
[5]
[6]
X. Jiang, Sulfur Chemistry, Vol. Topics in Current Chemistry, Springer,
Berlin, 2018.
General procedure for deoxygenation of sulfoxides: To a solution
of the corresponding sulfoxide (1 equiv.) in dry DCM (0.15 M) at
0°C, trimethoxybenzene (0.8 equiv.) and oxalyl chloride (1.2
equiv.) were added. The mixture was stirred at the same
temperature for around 10 minutes (complete conversion was
checked by TLC). The reaction was neutralized with NaOH (1M).
The aqueous layer was extracted with DCM (3 x 15 mL), the
combined organic extracts were washed with brine, dried over
anhydrous Na2SO4, filtered and concentrated under reduced
pressure. The crude mixture was purified using flash
chromatography to afford the pure product. The products were
obtained with yields between 61 and 97%.
a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832-
2842; b) B. Li, F. Zheng, J.-P. R. Chauvin, D. A. Pratt, Chem. Sci. 2015,
6, 6165-6178; c) P. Rose, M. Whiteman, P. K. Moore, Y. Z. Zhu, Nat.
Prod. Rep. 2005, 22, 351-368.
[7]
[8]
[9]
a) L. Wang, W. He, Z. Yu, Chem. Soc. Rev. 2013, 42, 599-621; b) T.
Castanheiro, J. Suffert, M. Donnard, M. Gulea, Chem. Soc. Rev. 2016,
45, 494-505; c) S. Otocka, M. Kwiatkowska, L. Madalińska, P.
Kiełbasiński, Chem. Rev. 2017, 117, 4147-4181; d) D. Kaiser, I. Klose,
R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019, 119, 8701-8780; e)
K. Gao, H. Yorimitsu, A. Osuka, Angew. Chem. Int. Ed. 2016, 55, 4573-
4576; Angew. Chem. 2016, 128, 4649-4652; f) J. Santandrea, C. Minozzi,
C. Cruché, S. K. Collins, Angew. Chem. Int. Ed. 2017, 56, 12255-12259;
Angew. Chem. 2017, 129, 12423-12427; g) S. Otsuka, K. Nogi, H.
Yorimitsu, Angew. Chem. Int. Ed. 2018, 57, 6653-6657; Angew. Chem.
2018, 130, 6763-6767; h) F. Dénès, C. H. Schiesser, P. Renaud, Chem.
Soc. Rev. 2013, 42, 7900-7942; i) B. Cheng, Y. Li, T. Wang, X. Zhang,
H. Li, Y. Li, H. Zhai, Chem. Commun. 2019, 55, 14606-14608.
Selected examples for switchable oxidations to sulfoxides and sulfones:
a) Y. Li, S. A.-e.-A. Rizvi, D. Hu, D. Sun, A. Gao, Y. Zhou, J. Li, X. Jiang,
Angew. Chem. Int. Ed. 2019, 58, 13499-13506; Angew. Chem. 2019, 131,
13633-13640; b) K.-J. Liu, J.-H. Deng, J. Yang, S.-F. Gong, Y.-W. Lin,
J.-Y. He, Z. Cao, W.-M. He, Green Chem. 2020, 22, 433-438; c) Z. Cheng,
P. Sun, A. Tang, W. Jin, C. Liu, Org. Lett. 2019, 21, 8925-8929; d) G.
Laudadio, N. J. W. Straathof, M. D. Lanting, B. Knoops, V. Hessel, T.
Noël, Green Chem. 2017, 19, 4061-4066; e) X. Lang, W. R. Leow, J.
Zhao, X. Chen, Chem. Sci. 2015, 6, 1075-1082; f) S. Doherty, J. G.
Knight, M. A. Carroll, J. R. Ellison, S. J. Hobson, S. Stevens, C. Hardacre,
P. Goodrich, Green Chem. 2015, 17, 1559-1571; g) F. Brockmeyer, J.
Martens, ChemSusChem 2014, 7, 2441-2444; h) B. Karimi, M. Khorasani,
ACS Catal. 2013, 3, 1657-1664.
Acknowledgements
Financial support for this work was provided by The Faculty of
Science of Universidad de los Andes (INV-2019-84-1813). P. A.-
G and C. M.-M acknowledge the Universidad de los Andes and
especially the Chemistry Department for their fellowships. Pierre
Hubert, Alvaro Rodriguez-Lopez and Sandra Ortiz are
acknowledged for the isolation of some starting materials,
preliminary experiments and HRMS studies, respectively.
Conflict of Interest
a) H. Hao, Z. Wang, J.-L. Shi, X. Li, X. Lang, ChemCatChem 2018, 10,
4545-4554; b) X. Chen, K. Deng, P. Zhou, Z. Zhang, ChemSusChem
2018, 11, 2444-2452; c) D. Chao, M. Zhao, ChemSusChem 2017, 10,
3358-3362; d) A. Casado-Sánchez, R. Gómez-Ballesteros, F. Tato, F. J.
Soriano, G. Pascual-Coca, S. Cabrera, J. Alemán, Chem. Commun.
2016, 52, 9137-9140; e) X. Lang, W. Hao, W. R. Leow, S. Li, J. Zhao, X.
Chen, Chem. Sci. 2015, 6, 5000-5005; f) G. K. Surya Prakash, A.
Shakhmin, K. E. Glinton, S. Rao, T. Mathew, G. A. Olah, Green Chem.
2014, 16, 3616-3622; g) S.-I. Murahashi, D. Zhang, H. Iida, T. Miyawaki,
M. Uenaka, K. Murano, K. Meguro, Chem. Commun. 2014, 50, 10295-
10298; h) A. Bottoni, M. Calvaresi, A. Ciogli, B. Cosimelli, G. Mazzeo, L.
Pisani, E. Severi, D. Spinelli, S. Superchi, Adv. Synth. Catal. 2013, 355,
191-202; i) P. Zhang, Y. Wang, H. Li, M. Antonietti, Green Chem. 2012,
There are no conflicts to declare.
Keywords: Chemoselectivity • Deoxygenation • sulfides •
Sulfonium salts • sulfoxides
[1]
Selected examples of naturally occurring sulfides can be found in: a) C.-
R. Jan, H.-R. Lo, C.-Y. Chen, S.-Y. Kuo, J. Nat. Prod. 2012, 75, 2101-
2107; b) R. X. Tan, P. R. Jensen, P. G. Williams, W. Fenical, J. Nat. Prod.
2004, 67, 1374-1382; c) C. S. Kim, J. Oh, L. Subedi, S. Y. Kim, S. U.
Choi, K. R. Lee, J. Nat. Prod. 2018, 81, 2129-2133; d) O. Goethe, A.
Heuer, X. Ma, Z. Wang, S. B. Herzon, Nat. Prod. Rep. 2019, 36, 220-
6
This article is protected by copyright. All rights reserved.