10.1002/anie.201812793
Angewandte Chemie International Edition
COMMUNICATION
Chem. 2015, 36, 785; c) O. Sala, H. Lüthi, A. Togni, J. Comput. Chem.
2014, 35, 2122; d) H. Pinto De Magalhaes, A. Togni, H. Lüthi, J. Org.
Chem. 2017, 82, 11799; e) O. Sala, N. Santschi, S. Jungen, H. Lüthi, M.
Iannuzzi, N. Hauser, A. Togni, Chem. Eur. J. 2016, 22, 1704; f) N.
Santschi, T. Nauser, J. Fluorine Chem. 2017, 203, 218; g) S. Mizuta, S.
Verhoog, X. Wang, N. Shibata, V. Gouverneur, M. Médebielle, J. Fluorine
Chem. 2013, 155, 124; h) M. Li, Y. Wang, X. Xue, J. Cheng, Asian J. Org.
Chem. 2017, 6, 235; For select mechanistic proposals from the Togni
group see; i) V. Matoušek, E. Pietrasiak, L. Sigrist, B. Czarniecki, A.
Togni, Eur. J. Org. Chem. 2014, 2014, 3087; j) N. Santschi, A. Togni, J.
Org. Chem. 2011, 76, 4189; k) N. Santschi, P. Geissbühler, A. Togni, J.
Fluorine Chem. 2012, 135, 83; l) K. Niedermann, N. Früh, E.
Vinogradova, M. Wiehn, A. Morenoa, A. Togni, Angew. Chem. Int. Ed.
2011, 50, 1059; Angew. Chem. 2011, 123, 1091; m) R. Koller, K. Stanek,
D. Stolz, R. Aardoom, K. Niedermann, A. Togni, Angew. Chem Int. Ed.
2009, 48, 4332; Angew. Chem. 2009, 121, 4396; n) N. Früh, A. Togni,
Angew. Chem. Int. Ed. 2014, 53, 10813; Angew. Chem. 2014, 126,
10989; o) K. Stanek, R. Koller, A. Togni, J. Org. Chem. 2008, 73, 7678;
For relevant reviews see; p) L. Ling, K. Liu, X. Li, Y. Li, ACS Catal. 2015,
5, 2458; q) X. Wang, A. Studer, Acc. Chem. Rev. 2017, 50, 1712; r) L.
Wang, J. Liu, Eur. J. Org. Chem. 2016, 2016, 1813; s) A. Studer, Angew.
Chem. Int. Ed. 2012, 51, 8950; Angew. Chem. 2012, 124, 9082.
Chem. Phys. 1985, 82, 299; d) A. Höllwarth, M. Böhme, S. Dapprich, A.
Ehlers, A. Gobbi, V. Jonas, K. Köhler, R. Stegmann, A. Veldkamp, G.
Frenking, Chem. Phys. Lett. 1993, 208, 237. Subsequently, single point
calculations were performed using the PW6B95 functional with D3
empirical dispersion with Becke-Johnson damping; e) Y. Zhao, D. G.
Truhlar, J. Phys Chem. A. 2005, 109, 5656; f) S. Grimme, J. Antony, S.
Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; g) S. Grimme, S.
Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456. For these
calculations the def2-TZVPP basis set was used; h) A. Schäfer, H. Horn,
R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571; i) F. Weigend, R. Ahlrichs,
Phys. Chem. Chem. Phys. 2005, 7, 3297. The latter calculations also
included solvent effects by means of the SMD method; j) A. Marenich, C.
Cramer, D. Truhlar, J. Phys. Chem. B. 2009, 113, 6378. The energies of
the structures with an open-shell singlet spin states were corrected using
the approach proposed by Yamaguchi in order to account for the spin
contamination; k) K. Yamaguchi, F. Jensen, A. Dorigo, K. Houk, Chem.
Phys. Lett. 1988, 149, 537; l) S. Yamanaka, T. Kawakami, H. Nagao, K.
Yamaguchi, Chem. Phys. Lett. 1994, 231, 25; [see (SI)].
[13] In this transition state, the S2 value remains equal to 0.34 (S equal to
0.27).
[14] a) K. Uneyama, Organofluorine Chemistry, Wiley-Blackwell, 2006, pp.
69; b) F. Bernardi, W. Cherry, S. Shaik, N. Epiotis, J. Am Chem. Soc.
1978, 100, 1352.
[8]
[9]
a) D. Katayev, V. Matoušek, R. Koller, A. Togni, Org. Lett. 2015, 17,
5898; b) V. Matoušek, A. Togni, V. Bizet, D. Cahard, Org. Lett. 2011, 13,
5762; c) D. Katayev, J. Václavík, F. Brüning, B. Commare, A. Togni,
Chem. Commun. 2016, 52, 4049; d) D. Katayev, H. Kajita, A. Togni,
Chem. Eur. J. 2017, 33, 8353.
[15] L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme Phys.
Chem. Chem. Phys. 2017, 19, 32184.
a) M. Kaur, M. Singh, N. Chadha, O. Silikari, Eur. J. Med. Chem. 2016,
123, 858; b) M. Xia, R. Ma, J. Heterocyclic Chem. 2014, 51, 539; c) F.
Zhou, Y. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381; d) M. Brennan,
B. Trost, Synthesis, 2009, 18, 3003; e) C. Galliford, K. Scheidt, Angew.
Chem. Int. Ed. 2007, 46, 8748; Angew. Chem. 2007, 119, 8902; f) J. Lin,
S. Danishefsky, Angew. Chem. Int. Ed. 2003, 42, 36; Angew. Chem.
2003, 115, 38; g) A. Millemaggi, R. Taylor, Eur. J. Org. Chem. 2010, 24,
4527; h) N. Deppermann, H. Thomanek, A. Prenzel, W. Maison, J. Org.
Chem. 2010, 75, 5994; i) C. Zhang, D. Zhuang, J. Li, S. Chen, X. Du, J.
Wang, J. Li, B. Jiang, J. Yao, Org. Biomol. Chem. 2013, 11, 5621.
[10] a) Stoichiometric reactions of L4 and MgBr2•OEt2, L1 and MgBr2•OEt2,
and L1, MgBr2•OEt2 and 4a, respectively, were monitored by 1H NMR;
complete conversion to new species was observed in all cases [see (SI)];
b) Stoichiometric reaction of 1 with MgBr2•OEt2 was monitored by 19F
NMR. Immediate loss of the 19F NMR signal of 1 was observed,
accompanied by the appearance of 2 downfield peaks at 33 ppm and –
34 ppm. [see (SI)].
[11] While reagents 1 and 2 have been reported to react with TEMPO to
generate TEMPO-CF3 under certain reaction conditions, reacting 1 with
1.1 equivalents of TEMPO in the presence of 10 mol% MgBr2•OEt2 under
the standard reaction conditions did not lead to formation of TEMPO-CF3
[see (SI)].
[12] The Gaussian 09 code was used for all the calculations; a) M. J. Frisch,
G. W. T., H. B. Schlegel, et al. Gaussian 09, Revision D.01, Gaussian,
Inc.: Wallingford CT, 2009. The geometries of the minima and the
transition-states were optimized using Grimme’s B97-D density
functional including the D2 empirical dispersion; b) S. Grimme, J. Comput.
Chem. 2006, 27, 1787. The 6-31g(d,p) basis set was used for C, H, N, O
and F and Mg. For the I and Br atoms the LANL2DZ pseudopotential was
used with the addition of d-polarization functions; c) P. Hay, W. Wadt, J.
This article is protected by copyright. All rights reserved.