C O M M U N I C A T I O N S
mobility of C60 in the fluid-mesomorphic state was investigated
for the first time. The simple modification of C60 by two- (2) or
three-long alkyl chains (1 and 4) permits a high C60 content in the
mesomorphic materials. The materials are electrochemically active
and possess a comparably high electron carrier mobility. Our
findings are of interest for the design of fullerene containing soft
materials with electrochemical and optoelectronic functions. More-
over, the long-range ordered lamellae described here can be
employed as “soft template” materials12 for the synthesis of two-
dimensional polymers or layered material with conductive or optical
properties.
Figure 2. (a) Cyclic (scan rate 0.1 V s-1) and (b) differential pulse (pulse
amplitude 25 mV) voltammograms of a cast film of 4 on a glassy carbon
electrode (0.1 M aqueous n-Bu4NCl solution, at 60 °C (black and red) and
at 15 °C (blue)). (c) Transient photocurrent curves as a double logarithmic
plot for a negative carrier of 1 in the mesophase at 120 °C.
Acknowledgment. This work was supported, in part, by a
Grand-in-Aid from the Ministry of Education, Sciences, Sports and
Culture, Japan, and PRESTO, JST, Japan (T.N.). We thank Drs.
K. Ariga and M. Takeuchi (NIMS) and Dr. T. Michinobu (Tokyo
Inst. Technol.) for useful discussion.
The XRD pattern for 1 at 185 °C shows a strong peak at 2θ )
1.58° assigned (0 0 1) (d spacing ) 5.59 nm) accompanied by higher
order peaks up to (0 0 14) at 2θ ) 23.44° (Figure 1c). In addition, a
broad halo centered at 2θ ≈ 19° is assigned to the molten alkyl chains.
The XRD analyses of 2 and 4 in the mesophase also showed similar
patterns with the peaks assigned from (0 0 1) to (0 0 12), from which
their interlayer distances are calculated as 4.75 and 4.80 nm,
respectively (Figure S3). These higher-degree peaks in the XRD
patterns, together with the fluid and birefringent mesophase in the
POM, reveal a long-range ordered lamellar mesophase comparable to
an ordered smectic phase. A schematic model of the supramolecular
organization of 1 is depicted in Figure 1d.
Supporting Information Available: Thermal analyses, electro-
chemical data as well as TOF analyses. This material is available free
References
(1) (a) Delgado, J. L.; Herranz, M.; Martin, N. J. Mater. Chem. 2008, 18, 1417.
(b) Thomas, S. W., III; Joly, G. D.; Swager, T. M. Chem. ReV. 2007, 107,
1339. (c) Wu, J.; Pisula, W.; Mu¨llen, K. Chem. ReV. 2007, 107, 718. (d)
Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser,
M.; Amstutz, A. Science 1997, 276, 384.
(2) (a) Goodby, J. W.; Saez, I. M.; Cowling, S. J.; Go¨rtz, V.; Draper, M.;
Hall, A. W.; Sia, S.; Cosquer, G.; Lee, S.-E.; Raynes, E. P. Angew. Chem.,
Int. Ed. 2008, 47, 2754. (b) Tschierske, C. Chem. Soc. ReV. 2007, 36, 1930.
(c) Chang, H.-C.; Shiozaki, T.; Kamata, A.; Kishida, K.; Ohmori, T.; Kiriya,
D.; Yamauchi, T.; Furukawa, H.; Kitagawa, S. J. Mater. Chem. 2007, 17,
4136. (d) Tanabe, K.; Yasuda, T.; Yoshio, M.; Kato, T. Org. Lett. 2007, 9,
4271. (e) Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed.
2006, 45, 38.
(3) (a) Sergeyev, S.; Pisula, W.; Geerts, Y. H. Chem. Soc. ReV. 2007, 36, 1902.
(b) Funahashi, M.; Hanna, J.-I. AdV. Mater. 2005, 17, 594. (c) Dimitra-
kopoulos, C.; Malenfant, P. R. L. AdV. Mater. 2002, 14, 99.
(4) (a) Anthopoulos, T. D.; Singh, B.; Marjanovic, N.; Sariciftci, N. S.; Ramil,
A. M.; Sitter, H.; Co¨lle, M.; de Leeuw, D. M. Appl. Phys. Lett. 2006, 89,
213504. (b) Frankevich, E.; Maruyama, Y.; Ogata, H. Chem. Phys. Lett.
1993, 214, 39.
(5) (a) Deschenaux, R.; Donnio, B.; Guillon, D. New J. Chem. 2007, 31, 1064.
(b) Zhong, Y.-W.; Matsuo, Y.; Nakamura, E. J. Am. Chem. Soc. 2007,
129, 3052. (c) Bushby, R. J.; Hamley, I. W.; Liu, Q.; Lozman, O. R.; Lydon,
J. E. J. Mater. Chem. 2005, 15, 4429. (d) Chuard, T.; Deschenaux, R. J.
Mater. Chem. 2002, 12, 1944. (e) Sawamura, M.; Kawai, K.; Matsuo, Y.;
Kanie, K.; Kato, T.; Nakamura, E. Nature 2002, 419, 702. (f) Felder, D.;
Heinrich, B.; Guillon, D.; Nicoud, J.-F.; Nierengarten, J.-F. Chem.sEur.
J. 2000, 6, 3501. (g) Chuard, T.; Deschenaux, R. HelV. Chim. Acta 1996,
79, 736.
(6) (a) Prato, M.; Maggini, M.; Giacometti, C.; Sandona´, G.; Farnia, G.
Tetrahedron 1996, 52, 5221. (b) Campidelli, S.; Lenoble, J.; Barbera´, J.;
Paolucci, F.; Marcaccio, M.; Paolucci, D.; Deschenaux, R. Macromolecules
2005, 38, 7915.
(7) (a) Nakanishi, T.; Ariga, K.; Michinobu, T.; Yoshida, K.; Takahashi, H.;
Teranishi, T.; Mo¨hwald, H.; Kurth, D. G. Small 2007, 3, 2019. (b)
Nakanishi, T.; Miyashita, N.; Michinobu, T.; Wakayama, Y.; Tsuruoka,
T.; Ariga, K.; Kurth, D. G. J. Am. Chem. Soc. 2006, 128, 6328.
(8) Melting of the samples into the isotropic fluid are at 242, 3; 240, 5; and
250 °C, 6, respectively.
(9) (a) Liu, W.; Zhang, Y.; Gao, X. J. Am. Chem. Soc. 2007, 129, 4973. (b)
Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593.
(10) (a) Hosomizu, K.; Imahori, H.; Hahn, U.; Nierengarten, J.-F.; Listorti, A.;
Armaroli, N.; Nemoto, T.; Isoda, S. J. Phys. Chem. C 2007, 111, 2777. (b)
Guldi, D. M. Chem. Soc. ReV. 2002, 31, 22.
(11) (a) Tuladhar, S. M.; Poplavskyy, D.; Choulis, S. A.; Durrant, J. R.; Bradley,
D. D. C.; Nelson, J. AdV. Funct. Mater. 2005, 15, 1171. (b) Yoshimoto,
N.; Hanna, J. J. Mater. Chem. 2003, 13, 1004. (c) Percec, V.; Glodde, M.;
Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy,
V. S. K.; Heiney, P. A.; Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson,
S. D.; Duan, H. Nature 2002, 419, 384. (d) Adam, D.; Schuhmacher, P.;
Simmerer, J.; Ha¨ussling, L.; Siemensmeyer, K.; Etzbachi, K. H.; Ringsdorf,
H.; Haarer, D. Nature 1994, 371, 141.
It is advantageous if the electrochemical9 and optoelectronic10
properties of fullerenes in the mesomorphic state are maintained
when practical applications are considered. The derivatives display
electrochemical activity when measured as cast films on a glassy
carbon electrode above the solid/mesomorphic phase transition
temperatures. A cast film of 4 (or 1: see Figure S4) in 0.1 M aqueous
n-Bu4NCl solution at 60 °C showed the first and second redox
events corresponding to the generation of C60 monoanion and
dianion at potentials of Ered,1 ) -0.70 and Ered,2 ) -0.87 V,
respectively (Figure 2a, black, and 2b, red lines). In contrast, no
redox response was observed for a cast film of 4 at 15 °C in the
crystalline state (Figure 2a blue line). The fluid-mesophase evidently
facilitates the diffusion of molecules in this system such as
supporting electrolyte, solvent, and the fullerene derivative itself.2c
We also found that the materials possess a relatively large charge
carrier mobility. Figure 2c shows the transient photocurrent curves
(log-log plots) of 1 for a negative carrier at 120 °C measured using
a conventional time-of-flight setup (λex ) 356 nm). From the kink
points in the log-log plots, which correspond to the transit time,
the electron mobility was estimated to be ∼3 × 10-3 cm2 V-1
s-1 at an electric field of 2 × 105 V cm-1. This value is comparable
to those of smectic liquid crystalline phases of organic semiconduc-
tor oligomers11a,b or supramolecular columnar liquid crystals.11c
This value is considered a lower limit because the sample is
composed of random domains and consequently one expects a
higher mobility for a uniformly oriented sample.11d To better
understand the charge transport mechanism further detailed tem-
perature dependent experiments are required. The systems are well
suited for such studies because the mesophase exists over a broad
temperature range. The occurrence of charge carrier mobility and
electrochemical activity reveal the advantages of mesomorphic
fullerenes.
(12) (a) Akagi, K.; Piao, G.; Kaneko, S.; Sakamaki, K.; Shirakawa, H.; Kyotani,
M. Science 1998, 282, 1683. (b) Attard, G. S.; Glyde, J. C.; Go¨ltner, C. G.
Nature 1995, 378, 366.
In summary, long-range ordered lamellar mesophases of fullerene
derivatives bearing long alkyl chains were presented and the carrier
JA803593J
9
J. AM. CHEM. SOC. VOL. 130, NO. 29, 2008 9237