366
Helvetica Chimica Acta – Vol. 90 (2007)
bentonite clay (1.0 g) in CH2Cl2 (10 ml), and (ꢀ)-20 (0.330 g) in CH2Cl2 (5 ml) for 60 min at 208. Workup
1
with Et2O (5 ml) followed by CC (silica gel (10 g)): 0.187 g of a 10 :1 mixture (by H-NMR) of (ꢀ)-21
(51%) and 24 (4%).
Data of(2 S,4aR,8R,8aR)-4a,5,8,8a-Tetrahydro-2-(2-hydroxyphenyl)-4,4,7-trimethyl-4H-1,3-benzo-
dioxin-8-ol (24): 1H-NMR2): 1.25 (s, Me(18)); 1.17 (s, Me(18)); 1.55 (ddd, J(6a,7)=11, J(6a,7’)=6,
J(6a,1)=2, HꢀC(6)); 1.74–1.77 (m, Me(19)); 2.07 (dddq, J(7’,7)=18, J(7’,6)=6, J(7’,8)=5, J(7’,
19)=1.5, H’ꢀC(7)); 2.29–2.41 (m, HꢀC(7)); 3.81 (br. s, HꢀC(10)); 4.29 (dd, J(1,10)=2.5, J(1,6a)=2,
HꢀC(1)); 5.58–5.62 (m, HꢀC(8)); 5.87 (s, HꢀC(3)); 6.74–6.80 (m, HꢀC(13), HꢀC(15)); 7.06 (dd,
J(16,15)=8, J(16,14)=1.8, HꢀC(16)); 7.13 (td, J(14,13(15))=8, J(14,16)=1.8, HꢀC(14)); 7.87 (s,
OHꢀC(12)). 13C-NMR2): 20.60 (q, C(19)); 22.45 (q, C(17)); 22.97 (t, C(7)); 26.99 (q, C(18)); 33.74 (d,
C(6)); 69.77 (d, C(10)); 75.25 (d, C(1)); 75.54 (s, C(5)); 97.26 (d, C(3)); 117.08 (d, C(13)); 119.38 (d,
C(15)); 122.09 (s, C(11)); 124.63 (d, C(8)); 128.04 (d, C(16)); 130.06 (d, C(14)); 130.97 (s, C(9));
155.41 (s, C(12)).
15. Interaction of( ꢀ)-cis-Verbenol Epoxide ((ꢀ)-20) with (2E)-But-2-enal on Askanite–Bentonite
Clay. As described in Exper. 7, with (2E)-but-2-enal (0.4 g) in CH2Cl2 (5 ml), askanite–bentonite clay
(1.5 g) in CH2Cl2 (15 ml), and (ꢀ)-(20) (0.400 g) in CH2Cl2 (5 ml) for 60 min at r.t. Workup with Et2O
(5 ml) followed by CC (silica gel (10 g)): (ꢀ)-21 (0.052 g, 13%), (ꢀ)-22 (0.019 g, 5%), (ꢀ)-25 (0.088 g,
1
1
16%), 26a/26b 1:0.4 (by H-NMR; 0.043 g) and 26a/26b/27 1:0.7:0.4 (by H-NMR; 0.036 g), i.e., yield
8.5% for 26a, 4.6% for 26b, and 1% for 27.
Data of(2 S,4aR,8R,8aR)-4a,5,8,8a-Tetrahydro-4,4,7-trimethyl-2-[(1E)-prop-1-enyl]-4H-1,3-benzo-
1
dioxin-8-ol ((ꢀ)-25): [a]25800 =ꢀ66 (c=10). H-NMR: 1.15 (s, Me(14)); 1.38 (s, Me(15)); 1.66 (dd, J(13,
12)=6.5, J(13,11)=2, Me(13)); 1.75 (br. s, Me(16)); 1.37 (ddd, J(6a,7)=11, J(6a,7’)=6, J(6a,1)=2,
HaꢀC(6)); 1.93 (dddq, J(7’,7)=17.5, J(7’,6)=6, J(7’,8)=5, J(7’,16)=1.5, H’ꢀC(7)); 2.28 (dddqd, J(7,
7’)=17.5, J(7,6a)=11, J(7,8)=2.5, J(7,16)=2.5, J(7,10)=2, HꢀC(7)); 2.68 (br. s, OH); 3.72–3.75 (m,
HꢀC(10)); 4.09 (dd, J(1,10)=2.5, J(1,6a)=2, HꢀC(1)); 5.13 (d, J(3,11)=6, HꢀC(3)); 5.44 (ddq, J(11,
12)=15.5, J(11,3)=6, J(11,13)=2, HꢀC(11)); 5.55 (ddq, J(8,7’)=5, J(8,7)=2.5, J(8,16)=1.5, Hꢀ
C(8)); 5.80 (dqd, J(12,11)=15.5, J(12,13)=6.5, J(12,3)=0.5, HꢀC(12)). 13C-NMR: 17.523 (q, C(13));
20.62 (q, C(16)); 22.68 (q, C(15)); 22.87 (t, C(7)); 27.17 (q, C(14)); 33.83 (d, C(6)); 70.23 (d, C(10));
73.85 (s, C(5)); 74.51 (d, C(1)); 95.46 (d, C(3)); 125.24 (d, C(8)); 128.87 (d, C(11)); 130.15 (d, C(12));
130.72 (s, C(9)). HR-MS: 238.15711 (M+, C14H22O3þ ; calc. 238.15688).
Data of(2 S,4R,4aS,8R,8aR)-3,4,4a,5,8,8a-Hexahydro-4,7-dimethyl-2-[(1E)-prop-1-enyl]-2H-1-ben-
zopyran-4,8-diol (26a; main isomer): 1H-NMR (from mixture 26a/26b)2): 1.42 (d, J(14,4a)=0.8,
Me(14)); 1.47 (ddd, J(4e,4a)=13, J(4e,3a)=3, J(4e,6a)=1, HeꢀC(4)); 1.65 (dd, J(13,12)=6.5, J(13,
11)=2, Me(13)); 1.69 (br. dd, J(4a,4e)=13, J(4a,3a)=11.5, HaꢀC(4)); 1.73 (dddd, J(6a,7)=10.5, J(6a,
7’)=7, J(6a,1)=2, J(6a,4e)=1, HaꢀC(6)); 1.77–1.80 (m, Me(15)); 2.00–2.17 (m, 2 HꢀC(7)); 3.65 (dd,
J(1,10)=2.5, J(1, 6a)=2, HꢀC(1)); 3.83 (ddddq, J(3a,4a)=11.5, J(3a,11)=7, J(3a,4e)=3, J(3a,12)=1,
J(3a,13)=0.5, HaꢀC(3)); 3.86 (br. s, HꢀC(10)); 5.45 (ddq, J(11,12)=15,5, J(11,3)=7, J(11,13)=2, Hꢀ
C(11)); 5.58–5.62 (m, HꢀC(8)); 5.68 (dqd, J(12,11)=15.5, J(12,13)=6.5, J(12,3)=1, HꢀC(12)). 13C-
NMR: 17.63 (q, C(13)); 20.67 (q, C(15)); 22.58 (t, C(7)); 27.09 (q, C(14)); 38.34 (d, C(6)); 41.28 (t,
C(4)); 70.57 (d, C(10)); 70.80 (s, C(5)); 76.43 (d, C(3)); 77.22 (d, C(1)); 124.79 (d, C(8)); 128.00 (d,
C(11)); 131.25 (d, C(12)); 131.32 (s, C(9)).
Data of(2 S,4S,4aS,8R,8aR)-3,4,4a,5,8,8a-Hexahydro-4,7-dimethyl-2-[(1E)-prop-1-enyl]-2H-4-ben-
1
zopyran-4,8-diol (26b; minor isomer): H-NMR (from mixture 26a/26b)2): 1.19 (s, Me(14)); 1.41 (ddd,
J(4e,4a)=14, J(4e,3a)=3, J(4e,6a)=1.2, HeꢀC(4)); 1.57 (dd, J(4a,4e)=14, J(4a,3a)=11.5, HaꢀC(4));
1.59 (m, HꢀC(6)); 1.64 (dd, J(13,12)=6.5, J(13,11)=2, Me(13)); 1.77–1.80 (m, Me(15)); 1.80–1.93
(m, HꢀC(7)); 1.92–2.01 (m, H’ꢀC(7)); 3.88 (br. s, HꢀC(10)); 4.07 (dd, J(1,10)=2.5, J(1,6)=2, Hꢀ
C(1)); 4.17 (ddddq, J(3a,4a)=11.5, J(3a,11)=7, J(3a,4e)=3, J(3a,12)=1, J(3a,13)=0.5, HaꢀC(3));
5.43 (ddq, J(11,12)=15.5, J(11,3)=7, J(11,13)=2, HꢀC(11)); 5.52–5.56 (m, HꢀC(8)); 5.68 (dqd, J(12,
11)=15.5, J(12,13)=6.5, J(12,3)=1, HꢀC(12)); d of HꢀC(6) was determined by 2D 13C,1H correlated
1
spectroscopy on direct constants; after suppression of the HꢀC(8) signal at d 5.54 in the H,1H dou-
ble-resonance spectrum, J(7,7’)=17 Hz for the HꢀC(7) signal and J(7’,7)=17 Hz, J(7’,6)=7 Hz, and