P. W. Roesky et al.
FULL PAPER
3-Pyridinecarboxylic acid 3-pyridinylmethyl ester: 1H NMR (C6D6,
250 MHz, 258C): d 4.90 (s, 2H; CH2O), 6.73 (m, 2H; aromatic), 7.65
(m, 1H), 7.94 (m, 2H; aromatic), 8.52 (m, 2H; aromatic), 9.12 (s, 1H;
aromatic); elemental analysis calcd (%) for C12H10N2O2: C 67.28, H 4.71, N
13.08; found C 67.53, H 4.75, N 12.89.
[10] S. Kobayashi, I. Hachiya, J. Org. Chem. 1994, 59, 3590 ± 3596.
[11] S. Kobayashi, I. Hachiya, M. Araki, H. Ishitani, Tetrahedron Lett.
1992, 34, 6815 ± 6518.
[12] S. Kobayashi, I. Hachiya, Y. Yamanoi, Bull. Chem. Soc. Jpn. 1994, 67,
2342 ± 2344.
[13] S. Kobayashi, I. Hachiya, M. Araki, H. Ishitani, Tetrahedron Lett.
1993, 34, 3755 ± 3758; b) S. Kobayashi, H. Ishitani, J. Am. Chem. Soc.
1994, 116, 4083 ± 4084.
[14] A. Kawada, S. Mitamura, S. Kobayashi, Synlett 1994, 545 ± 546.
[15] A. Kawada, S. Mitamura, S. Kobayashi, J. Chem. Soc. Chem.
Commun. 1993, 1157 ± 1158.
[16] Review: a) S. Kobayashi, Synlett 1994, 689 ± 701; b) S. Kobayashi, in
Transition Metals for Organic Synthesis, Vol. 2 (Eds.: M. Beller, C.
Bolm), Wiley-VCH, Weinheim, 1998, pp. 285 ± 312; c) S. Kobayashi,
Top. Organomet. Chem. 1999, 63 ± 118.
General procedure for the hydroamination reaction (NMR scale): Com-
pound 1 was weighed under argon into an NMR tube. C6D6 (ꢀ0.7 mL) was
condensed into the tube, and the mixture was frozen to 1968C. The
reactant was injected onto the solid mixture, and the whole sample was
melted and mixed just before insertion into the core of the NMR machine
(t0). The ratio between the reactant (product) and the catalyst was exactly
calculated by comparison of the integration of alkyne signals with the
N(SiMe3)2 signals. The latter were used as an internal standard for the
TOFs measurements. The turnover frequency was calculated according to
Ref. [5d]
[17] a) J. L. Namy, J. Souppe, J. Collin, H. B. Kagan, J. Org. Chem. 1984, 49,
2045 ± 2049; b) T. Okano, M. Matsuoka, H. Konishi, J. Kiji, Chem.
Lett. 1987, 181 ± 184.
[18] H. Ohno, A. Mori, S. Inoue, Chem. Lett. 1993, 375 ± 378.
[19] M. P. S. Ishar, A. Wali, R. P. Ganghi, J. Chem. Soc. Perkin. Trans. 1
1990, 2185 ± 2194.
[20] S. J. Danishefsky, B. J. Uang, G. Quallich, J. Am. Chem. Soc. 1984, 106,
2453 ± 2455.
[21] D. C. Bradley, J. S. Ghorta, F. A. Hart, J. Chem. Soc. Dalton. Trans.
1973, 1021 ± 1023.
[22] H. Berberich, P. W. Roesky, Angew. Chem. 1998, 110, 1618 ± 1620;
Angew. Chem. Int. Ed. 1998, 37, 1569 ± 1571.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft
(Heisenberg fellowship for P.W.R.), the Karl-Winnacker-Stiftung, and the
Fonds der Chemischen Industrie. Additionally, generous support from Prof.
Dr. D. Fenske is gratefully acknowledged.
[23] a) K. C. Hultsch, T. P. Spaniol, J. Okuda, Organometallics 1997, 16,
4845 ± 4846; b) S. Agarwal, C. Mast, S. Anfang, M. Karl, K. Dehnicke,
A. Greiner, Polym. Prepr. 1998, 39, 414 ± 415; c) S. Agarwal, M. Karl,
K. Dehnicke, G. Seybert, W. Massa, A. Greiner, J. Appl. Polym. Sci.
1999, 73, 1669 ± 1675; d) E. Martin, P. Dubois, R. Jerome, Macro-
molecules 2000, 33, 1530 ± 1535.
[24] C. Boisson, F. Barbotin, R. Spitz, Macromol. Chem. Phys. 1999, 200,
1163 ± 1166.
[25] Review: R. Anwander, Top. Curr. Chem. 1996, 179, 33 ± 112.
[26] a) L. Claisen, Chem. Ber. 1887, 20, 646 ± 650; b) W. Tishchenko, Chem.
Zentralbl. 1906, 77, 1309.
[27] Ullmannꢀs Encyclopedia of Industrial Chemistry, 6th ed., Wiley-VCH,
Weinheim, 1999.
[28] a) E. G. E. Hawkins, D. J. G. Long, F. W. Major, J. Chem. Soc. 1955,
1462 ± 1468 and quoted patents; b) F. R. Frostick, B. Phillips, (Union
Carbide &Carbon Corp.), US 2716123, 1953 [Chem. Abstr. 1953, 50,
7852f].
[29] W. C. Child, H. Adkins, J. Am. Chem. Soc. 1923, 47, 789 ± 807.
[30] a) F. J. Villani, F. F. Nord, J. Am. Chem. Soc. 1947, 69, 2605 ± 2607;
b) L. Lin, A. R. Day, J. Am. Chem. Soc. 1952, 74, 5133 ± 5135.
[31] P. R. Stapp, J. Org. Chem. 1973, 38, 1433 ± 1434.
[32] S. Onozawa, T. Sakakura, M. Tanaka, M. Shiro, Tetrahedron 1996, 52,
4291 ± 4302.
[1] Communication in part: M. R. Bürgstein, P. W. Roesky, Abstract of
Papers, 219th National Meeting of the American Chemical Society, San
Francisco, CA, 2000, INORG 233.
[2] Review: a) F. T. Edelmann, in Comprehensive Organometallic Chem-
isty II, Vol. 4, (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson),
Pergamon, Oxford, 1995, pp. 11 ± 210; b) F. T. Edelmann, Top. Curr.
Chem. 1996, 179, 247 ± 276.
[3] a) W. J. Evans, I. Bloom, W. E. Hunter, J. L. Atwood, J. Am. Chem.
Soc. 1983, 105, 1401 ± 1403; b) G. Jeske, H. Lauke, H. Mauermann, H.
Schumann, T. J. Marks, J. Am. Chem. Soc. 1985, 107, 8111 ± 8118;
c) V. P. Conticello, L. Brard, M. A. Giardello, Y. Tsuji, M. Sabat, C. L.
Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 2761 ± 2762; d) P. W.
Roesky, U. Denninger, C. L. Stern, T. J. Marks, Organometallics 1997,
16, 4486 ± 4492.
[4] a) P. L. Watson, J. Am. Chem. Soc. 1982, 104, 337 ± 339; b) P. L.
Watson, G. W. Parshall, Acc. Chem. Res. 1995, 18, 51 ± 56; c) E. E.
Bunel, B. J. Burger, J. E. Bercaw, J. Am. Chem. Soc. 1988, 110, 976 ±
981; d) E. B. Coughlin, J. E. Bercaw, J. Am. Chem. Soc. 1992, 114,
7607 ± 7608; e) P. J. Shapiro, E. E. Bunel, W. P. Schaefer, J. E. Bercaw,
Organometallics 1990, 9, 867 ± 876; f) M. A. Giardello, Y. Yamamoto,
L. Brard, T. J. Marks, J. Am. Chem. Soc. 1995, 117, 3276 ± 3277.
[33] K.-I. Morita, Y. Nishiyama, Y. Ishii, Organometallics 1993, 12, 3748 ±
3752.
Â
[5] a) M. R. Gagne, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 4108 ± 4109;
Â
b) M. R. Gagne, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114,
[34] T. Ito, H. Horino, Y. Koshiro, A. Yamamoto, Bull. Chem. Soc. Jpn.
1982, 55, 504 ± 512.
275 ± 294; c) Y Li, T. J. Marks, J. Am. Chem. Soc. 1996, 118, 707 ± 708;
d) Y. Li, T. J. Marks, J. Am. Chem. Soc. 1996, 118, 9295 ± 9306; e) P. W.
Roesky, C. L. Stern, T. J. Marks, Organometallics 1997, 16, 4705 ± 4711;
f) Y. Li, T. J. Marks, J. Am. Chem. Soc. 1998, 120, 1757 ± 1771; g) V. M.
Arredondo, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1998, 120,
4871 ± 4872.
[35] M. Yamashita, T. Ohishi, Appl. Organomet. Chem. 1993, 7, 357 ± 361.
[36] For the definition of TOF see: J. Takehara, S. Hashiguchi, A. Fujii, S.
Inoue, T. Ikariya, R. Noyori, Chem. Commun. 1996, 233 ± 234.
[37] D. A. Evans, A. H. Hoveyda, J. Am. Chem. Soc. 1990, 112, 6447 ±
6449.
[38] M. Nishiura, M. Kameoka, T. Imamoto, Kidorui 2000, 36, 294 ± 295.
[39] Y. Ogata, A. Kawasaki, Tetrahedron 1969, 25, 929 ± 935.
[40] T. Ooi, T. Miura, K. Takaya, K. Maruoka, Tetrahedron Lett. 1999, 40,
7695 ± 7698.
[6] a) S. P. Nolan, M. Porchia, T. J. Marks, Organometallics 1991, 10,
1450 ± 1457; b) T. Sakakura, H.-J. Lautenschläger, M. Tanaka, J.
Chem. Soc. Chem. Commun. 1991, 40 ± 41; c) G. A. Molander, P. J.
Nichols, J. Am. Chem. Soc. 1995, 117, 4414 ± 4416; d) G. A. Molander,
W. A. Retsch, Organometallics 1995, 14, 4570 ± 4575.
[41] M. Yamashita, Y. Watanabe, T.-A. Mitsudo, Y. Takegami, Bull. Chem.
Soc. Jpn. 1976, 49, 3597 ± 3600.
[7] a) G. Erker, R. Aul, Chem. Ber. 1991, 124, 1301 ± 1310; b) K. N.
Harrison, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 9220 ± 9221;
c) E. A. Bijpost, R. Duchateau, J. H. Teuben, J. Mol. Catal. 1995, 95,
121 ± 128.
Â
[42] F. Le Bideau, T. Coradin, D. Gourier, J. Henique, E. Samuel,
Tetrahedron Lett. 2000, 41, 5215 ± 5218.
[43] G. Fouquet, F. Merger, R. Platz, Liebigs Ann. Chem. 1979, 1591 ± 1601.
[44] G. M. Villacorta, J. San Fillipo, Jr., J. Org. Chem. 1983, 48, 1151 ± 1154.
[45] For examples of tandem aldol-Tishchenko reactions, see: a) L. Lu, H.-
Y. Chang, J.-M. Fang, J. Org. Chem. 1999, 64, 843 ± 853; b) P. M.
Bodnar, J. T. Shaw, K. A. Woerpel, J. Org. Chem. 1997, 62, 5674 ± 5675;
[8] M. R. Douglass, T. J. Marks, J. Am. Chem. Soc. 2000, 122, 1824 ± 1825.
[9] a) G. A. Molander, in Comprehensive Organic Synthesis, Vol. 1 (Ed.:
B. M. Trost, I. Fleming), Pergamon, Oxford 1991, pp. 251 ± 282; b) T.
Imamoto, Lanthanides in Organic Synthesis, Academic Press, London,
1994.
3084
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
0947-6539/01/0714-3084 $ 17.50+.50/0
Chem. Eur. J. 2001, 7, No. 14