Communication
the mixture stirred for 15 min. The mixture was then cooled to 08C
in an ice/H2O bath followed by addition of chloral (1.00 mmol). A
08C solution of the requisite ketene (1.00 mmol) in toluene (12 mL)
was subsequently added over 0.5 h. The reaction was stirred for an
additional 3 h at 08C before opening the flask to the air for 0.5 h
and concentration in vacuo. The resulting crude residue with the
stated diastereomeric ratio was purified by flash silica chromatog-
raphy (ether:petrol) to provide either the isolated lactone or chlori-
nated ester.
Acknowledgements
We thank the Royal Society for a URF (ADS), AstraZeneca and
the EPSRC for funding (JD - grant number EP/G501742/1). We
also thank the EPSRC UK National Mass Spectrometry Facility
at Swansea University.
Figure 3. Proposed catalytic cycle.
Keywords: asymmetric catalysis
· chlorination reactions ·
Conclusion
ketenes · lactones · stereodivergent reactions
To conclude, stereo- and chemodivergent asymmetric reaction
pathways are observed upon treatment of alkylarylketenes and
chloral with chiral NHCs, giving selectively either b-lactones
(up to 88:12 dr, up to 94% ee) or a-chloroesters (up to
94% ee), with 2-arylsubstitution or a-branching within the alkyl
chain of the ketene unit leading to the a-chlorination pathway.
Computational studies on a model system have allowed the
structural parameters that lead to selectivity in these reaction
processes to be analysed. Current research from this laboratory
is directed toward developing alternative uses of NHCs and
other Lewis bases in asymmetric catalysis.
[1] For selected general reviews, see: a) E. M. Phillips, A. Chan, K. A. Scheidt,
Aldrichimica Acta 2009, 42, 55–66; b) C. D. Campbell, K. B. Ling, A. D.
Smith, N-Heterocyclic Carbenes in Organocatalysis, Vol. 32, Springer, Dor-
drecht, 2011; c) A. Grossmann, D. Enders, Angew. Chem. Int. Ed. 2012,
51, 314–325; Angew. Chem. 2012, 124, 320–332; d) J. Izquierdo, G. E.
Hutson, D. T. Cohen, K. A. Scheidt, Angew. Chem. Int. Ed. 2012, 51,
11686–11698; Angew. Chem. 2012, 124, 11854–11866; e) M. N. Hopkin-
son, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496.
[2] For reviews, see: a) A. T. Biju, N. Kuhl, F. Glorius, Acc. Chem. Res. 2011,
44, 1182–1195; b) H. Vora, T. Rovis, Aldrichimica Acta 2011, 44, 3–11;
c) S. R. Yetra, A. Patra, A. T. Biju, Synthesis 2015, 47, 1357–1378; for
mechanistic studies, see: d) C. J. Collett, R. S. Massey, O. R. Maguire, A. S.
Batsanov, A. C. O’Donoghue, A. D. Smith, Chem. Sci. 2013, 4, 1514–
1522; e) C. J. Collett, R. S. Massey, J. E. Taylor, O. R. Maguire, A. C. O’Do-
noghue, A. D. Smith, Angew. Chem. Int. Ed. 2015, DOI: 10.1002/
anie.201501840.
[3] For a review, see: J. Douglas, G. Churchill, A. D. Smith, Synthesis 2012,
44, 2295–2309.
Experimental Section
For general experimental details, full characterisation data, NMR
spectra and HPLC traces, see the Supporting Information.
[4] For a review, see: a) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul,
A. Jose, V. Sreekumar, Chem. Soc. Rev. 2011, 40, 5336–5346.
[5] For a general review, see: a) J. L. Moore, T. Rovis, Top. Curr. Chem. 2009,
291, 77–144; for selected examples, see: b) J. E. Thomson, K. Rix, A. D.
Smith, Org. Lett. 2006, 8, 3785–3788.
General procedure (1): Lactonisation and chlorination at 08C
[6] For selected examples, see: a) S. J. Ryan, L. Candish, D. W. Lupton, J.
Am. Chem. Soc. 2009, 131, 14176–14177; b) J. Kaeobamrung, J. Mahat-
thananchai, P. Zheng, J. W. Bode, J. Am. Chem. Soc. 2010, 132, 8810–
8812; c) J. Mahatthananchai, P. Zheng, J. W. Bode, Angew. Chem. Int. Ed.
2011, 50, 1673–1677; Angew. Chem. 2011, 123, 1711–1715; d) A.
Biswas, S. De Sarkar, L. Tebben, A. Studer, Chem. Commun. 2012, 48,
5190–5192; e) J. Mahatthananchai, J. Kaeobamrung, J. W. Bode, ACS
Catal. 2012, 2, 494–503.
[7] For an excellent review, see: a) H. U. Vora, P. Wheeler, T. Rovis, Adv.
Synth. Catal. 2012, 354, 1617–1639; for other selected manuscripts,
see: b) M. He, G. J. Uc, J. W. Bode, J. Am. Chem. Soc. 2006, 128, 15088–
15089; c) Y. Kawanaka, E. M. Phillips, K. A. Scheidt, J. Am. Chem. Soc.
2009, 131, 18028–18029; d) N. T. Reynolds, T. Rovis, J. Am. Chem. Soc.
2005, 127, 16406–16407; e) K. B. Ling, A. D. Smith, Chem. Commun.
2011, 47, 373–375; f) A. T. Davies, J. E. Taylor, J. Douglas, C. J. Collett,
L. C. Morrill, C. Fallan, A. M. Z. Slawin, G. Churchill, A. D. Smith, J. Org.
Chem. 2013, 78, 9243–9257; g) J. E. Taylor, D. S. B. Daniels, A. D. Smith,
Org. Lett. 2013, 15, 6058–6061; h) A. T. Davies, P. M. Pickett, A. M. Z.
Slawin, A. D. Smith, ACS Catal. 2014, 4, 2696–2700.
To a flame dried Schlenk flask under an argon atmosphere was
added NHC precatalyst (0.10 mmol), base (0.09 mmol) and toluene
(6 mL) and the mixture stirred for 15 min. The mixture was then
cooled to 08C in an ice/H2O bath followed by addition of a 08C so-
lution of the requisite ketene (1.00 mmol) in toluene (12 mL), im-
mediately followed by chloral (1.00 mmol). Toluene (2 mL) was
added to wash residual reactants into solution and the reaction
was stirred for the stated time at 08C before opening the flask to
the air for 30 min and concentration in vacuo. The resulting crude
residue was purified by flash silica chromatography (ether:petrol)
to provide either the isolated lactone or chlorinated ester as
stated.
General procedure (2): Lactonisation and chlorination at 08C
with dropwise ketene addition
In instances where ketene dimerization was competitive with lacto-
nisation or chlorination the ketene was added dropwise. To a flame
dried Schlenk flask under an argon atmosphere was added NHC
precatalyst (0.10 mmol), base (0.09 mmol) and toluene (6 mL) and
[8] For selected examples, see: a) M. He, J. R. Struble, J. W. Bode, J. Am.
Chem. Soc. 2006, 128, 8418–8420; b) M. Wadamoto, E. M. Phillips, T. E.
Reynolds, K. A. Scheidt, J. Am. Chem. Soc. 2007, 129, 10098–10099; c) J.
Kaeobamrung, M. C. Kozlowski, J. W. Bode, Proc. Natl. Acad. Sci. USA
Chem. Eur. J. 2015, 21, 16354 – 16358
16357 ꢀ 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim