M. Sakamoto et al. / Journal of Organometallic Chemistry 694 (2009) 2820–2824
2823
Table 2
terizable rhodium-hydride species and H-SDmp [7e,13]. This mix-
ture was cooled and used for the catalytic reaction.
*
Crystal data and structure refinement for [Cp Ir(PMe3)(Ph)(CO)](BArF4) (4).
4
3.4. Characterization of [Cp Ir(PMe3)(Ph)(CO)](BArF4) (4) obtained
*
Formula
Formula weight
Crystal color, habit
Crystal dimensions (mm)
Crystal system
Space group
a (Å)
b (Å)
c (Å)
C52H41OIrF24 PB
1371.86
from the reaction in Table 1, entry 4
colorless, block
0.30 Â 0.10 Â 0.05
Monoclinic
P2/c (No. 13)
18.611(3)
12.612(2)
23.741(4)
107.041(2)
5327.8(16)
4
According to Table 1, entry 4, complex 1b was treated with
benzaldehyde and H2 (1 atm) at À20 °C. After 48 h, the 1H and
31P{1H} NMR spectra of the reaction mixture exhibited the signals
for [Cp Ir(PMe3)(Ph)(CO)](BAr4F) (4, 37% based on the internal stan-
*
dard {(CH3)3Si}4Si), H-SDmp (37%), and 2b (63%). Single crystals of 4
suitable for X-ray diffraction and elemental analysis were obtained
by diffusing this solution into hexane at room temperature under a
nitrogen atmosphere. 1H NMR (CD2Cl2): d 7.71 (bs, 8H, o-H of ArF),
7.56 (bs, 4H, p-H of ArF), 7.13 (m, 5H, Ph), 1.95 (d, JPH = 2.0 Hz,
b (°)
V (Å3)
Z
Dcalc (g cmÀ3
)
1.71
26.65
55.0
Total: 41317
l
(Mo K
a
) (cmÀ1
)
Max 2h (°)
Number of reflections measured
15H, Cp ), 1.63 (d, JPH = 10.6 Hz, 9H, PMe3). 31P{1H} NMR (CD2Cl2):
*
d À35.6 (s, PMe3). 13C{1H} NMR (CD2Cl2): d 167.5 (d, JPC = 11.6 Hz,
CO), 162.3 (q, JBC = 50.2 Hz, ipso-C of ArF), 139.8, 131.0 (s, o-C of
Ph), 135.4 (s, o-C of ArF), 129.4 (q, JFC = 34.7 Hz, m-C of ArF), 126.3
(s, m-C of Ph), 125.2 (q, JFC = 274.1 Hz, CF3), 122.2 (d, JPC = 9.7 Hz,
ipso-C of Ph), 118.0 (s, p-C of ArF), 104.2 (s, C5(CH3)5), 16.3 (d,
JPC = 42.5 Hz, PMe3), 9.7 (s, C5(CH3)5). ESI-MS (CH2Cl2): m/z = 509.1
Unique: 12168 (Rint = 0.069)
12168
707
17.21
0.0538
0.143
1.069
Number of observations (all reflections)
Number of variables
Reflection/parameter ratio
R1 (I > 2r
(I))a
wR2 (all reflections)b
GOF on F2c
(4+). IR (KBr pellet): 2042 ( CO) cmÀ1. Anal. Calc. for C52H42PF24OBIr:
m
a
R1
wR2 = [(
GOF = [
=
R
||Fo| À |Fc||/
R|Fo|(I > 2r(I)).
b
c
C, 45.49; H, 3.08. Found: C, 45.49; H, 3.22%.
R
(w(|Fo| À |Fc|)2/
R
wFo2))1/2 (all reflections).
R
w(|Fo| À |Fc|)2/(No À Nv)]1/2 (where No = number of observations,
Nv = number of variables).
3.5. Degradation of 1a in the presence of excess benzaldehyde at room
temperature
Group ‘‘Complex Functional Systems in Chemistry” Münster-Na-
goya) for a graduate externship.
The reaction of 1a (30.4 mg, 0.02 mmol) with benzaldehyde
(106.2 mg, 1 mmol) in CD2Cl2 at room temperature gave a brown
solution. The 1H and 31P{1H} NMR showed the formation of free
Appendix A. Supplementary material
*
H-SDmp and an uncharacterizable rhodium species having Cp
and PMe3. 1H NMR (CD2Cl2): d 1.72 (d, JPH = 3.1 Hz, Cp ), 1.50 (d,
*
CCDC 715530 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
JPH = 11.0 Hz, PMe3). 31P{1H} NMR (CD2Cl2):
d
3.29 (d,
JRhP = 157.9 Hz, PMe3). After the catalytic hydrogenation of benzal-
dehyde (Table 1, entry 1), the same rhodium species was detected
as the degradation product at room temperature.
3.6. X-ray structural determination
References
Crystal data and refinement parameters of 4 are summarized in
Table 2. Single crystals were coated with oil (Immersion Oil, type B:
Code 1248, Cargill Laboratories Inc.) and mounted on loop. Diffrac-
tion data were collected at À100 °C under a cold nitrogen stream
on a Rigaku AFC8 equipped with Mercury CCD detector equipped
[1] E.T. Papish, M.P. Magee, J.R. Norton, in: M. Peruzzini, R. Poli (Eds.), Recent
Advances in Hydride Chemistry, Elsevier, Amsterdam, 2001 (Chapter 2).
[2] G.J. Kubas, Metal Dihydrogen and
Plenum Publishers, New York, 2001.
[3] (a) For example: R. Noyori, T. Ohkuma, Angew. Chem., Int. Ed. 40 (2001) 40–
73;
r-Bond Complexes, Kluwer Academic/
with a graphite-monochromated Mo K
Six preliminary data frames were measured at 0.5° increments of
, to assess the crystal quality and preliminary unit cell parame-
ters. The intensity images were also measured at 0.5° intervals of
. The frame data were integrated using Rigaku/MSC CrystalClear
program package, and the data sets were corrected for absorption
using REQAB program. The calculation was performed with SHELX
a source (k = 0.71070 Å).
(b) R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 66 (2001) 7931–
7944;
(c) R. Noyori, M. Kitamura, T. Ohkuma, Proc. Natl. Acad. Sci. USA 101 (2004)
5356–5362;
(d) R. Noyori, C.A. Sandoval, K. Muñiz, T. Ohkuma, Philos. Trans. R. Soc. A 363
(2005) 901–912;
(e) K. Muñiz, Angew. Chem., Int. Ed. 44 (2005) 6622–6627;
(f) S. Gladiali, E. Alberico, Chem. Soc. Rev. 35 (2006) 226–236;
(g) J.S.M. Samec, J.E. Bäckvall, P.G. Andersson, P. Brandt, Chem. Soc. Rev. 35
(2006) 237–248;
x
x
-
97. Structure was solved by a Patterson method and refined by
full-matrix least-square procedures on F2. Anisotropic refinement
was applied to all non-hydrogen atoms except for disordered CF3
groups of BArF4. All of the hydrogen atoms were placed at calculated
positions. Five of CF3 groups are disordered over two positions. The
atom coordinates are available as a CIF file.
(h) T. Ikariya, A.J. Blacker, Acc. Chem. Res. 40 (2007) 1300–1308;
(i) M. Ito, T. Ikariya, J. Chem. Soc., Chem. Commun. (2007) 5134–5142.
[4] (a) For example: V. Niviére, C. Hatchikian, C. Cambillau, M. Frey, J. Mol. Biol.
195 (1987) 969–971;
(b) A. Volbeda, M.-H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilla-
Camps, Nature 373 (1995) 580–587;
(c) A. Volbeda, E. Garcin, C. Piras, A.L. de Lacey, V.M. Fernandez, E.C.
Hatchikian, M. Frey, J.C. Fontecilla-Camps, J. Am. Chem. Soc. 118 (1996)
12989–12996;
(d) Y. Higuchi, T. Yagi, N. Yasuoka, Structure 5 (1997) 1671–1680;
(e) E. Garcin, X. Vernede, E.C. Hatchikian, A. Volbeda, M. Frey, J.C. Fontecilla-
Camps, Structure 7 (1999) 557–566;
Acknowledgment
This research was financially supported by Grant-in-Aids for
Scientific Research (Nos. 18GS0207 and 18064009) from the Min-
istry of Education, Culture, Sports, Science, and Technology, Japan.
M.S. thanks the IRTG program (International Research Training
(f) H. Ogata, Y. Mizoguchi, N. Mizuno, K. Miki, S. Adachi, N. Yasuoka, T. Yagi, O.
Yamauchi, S. Hirota, Y. Higuchi, J. Am. Chem. Soc. 124 (2002) 11628–11635.
[5] (a) Recent reviews M.Y. Darensbourg, E.J. Lyon, X. Zhao, I.P. Georgakaki, Proc.
Natl. Acad. Sci. USA 100 (2003) 3683–3688;