Iwasaki et al.
cyclization).13,14 (2) The reaction at carbon B followed by facile
aryl migration of the unstable spirocyclohexadienyl radical
intermediate 4 gives biaryl compound 5.15 On the other hand,
trapping of the intermediate 4 by hydrogen radical or reduction-
protonation affords the spirocyclic compounds such as 6.16 (3)
Ipso substitution via attack of the aryl radical at carbon C
followed by elimination of the X radical gives the fused ring
8.17 In general, the aryl radical cyclization onto an aromatic
ring to form spirocycles such as 6 is extremely difficult,
producing a considerable amount of the cine-cyclized product
of the type 3,16 except for the reaction of indole derivatives.10
Presumably this is because spirocyclohexadienyl radical inter-
mediate 4 is extremely unstable in the reversible radical
reactions, and in some cases, rearrangement readily takes place
to form a fused-ring radical such as 2 or 7.13,15c We expected
that SmI2 in the presence of a proton source would effectively
trap the key intermediate 4 by single electron transfer followed
by protonation, which could realize the spirocyclization via
reductive biaryl coupling.10 Herein, we present a full account
of our investigation into the aryl radical spirocyclization onto
various aromatic rings mediated by SmI2.18
SCHEME 1
conditions, and the difficulty to obtain spiro compounds
selectively due to the unstable spirocyclic radical intermediates.
More recently, we have reported samarium(II)-mediated
spirocyclization through the addition of a ketyl radical onto an
aromatic ring.11,12 On the basis of this study, we next turned
our attention to samarium(II)-mediated spirocyclization by the
intramolecular addition of an aryl radical with an aromatic ring.
As shown in Scheme 1, (1) the intramolecular addition of aryl
radical 1 onto carbon A forms the cyclohexadienyl radical
intermediate 2, which is easily converted into the fused ring 3
by abstraction of a hydrogen atom on the carbon A (cine
Results and Discussion
SmI2-Mediated Spirocyclization of Benzoate Derivatives.
First, we examined the aryl radical coupling reaction of
2-iodophenyl benzoates 9a and 9b mediated by SmI2 with
HMPA. However, the reaction in the presence or absence of
i-PrOH led to decomposition of the starting materials, without
producing any detectable amounts of the desired spirocyclic
product (Scheme 2).
Considering that the phenyl ester moiety of 9a and 9b would
be labile under the reductive reaction conditions, we next
investigated the reaction of the N-methylbenzamide derivatives
10a-h in the presence of i-PrOH. The results are summarized
in Table 1. Fortunately, the reaction of 10a without a substituent
on the benzene ring could act as a radical acceptor with the
(9) (a) Tobinaga, S.; Kotani, E. J. Am. Chem. Soc. 1972, 94, 309–310. (b)
Kende, A. S.; Koch, K. Tetrahedron Lett. 1986, 27, 6051–6054. (c) Murase,
M.; Kotani, E.; Okazaki, K.; Tobinaga, S. Chem. Pharm. Bull. 1986, 34, 3159–
3165. (d) Kende, A. S.; Koch, K.; Smith, C. A. J. Am. Chem. Soc. 1988, 110,
2210–2218. (e) Rama Krishna, K. V.; Sujatha, K.; Kapil, R. S. Tetrahedron
Lett. 1990, 31, 1351–1352. (f) Green, S. P.; Whiting, D. A. J. Chem. Soc., Perkin
Trans. 1 1998, 193–201. (g) Hamamoto, H.; Anilkumar, G.; Tohma, H.; Kita,
Y. Chem. Eur. J. 2002, 8, 5377–5383. (h) Ibarra-Rivera, T. R.; Ga´mez-Montan˜o,
R.; Miranda, L. D. Chem. Commun. 2007, 3485–3487.
(10) (a) Flanagan, S. R.; Harrowven, D. C.; Bradley, M. Tetrahedron Lett.
2003, 44, 1795–1798. (b) Kyei, A. S.; Tchabanenko, K.; Baldwin, J. E.;
Adlington, R. M. Tetrahedron Lett. 2004, 45, 8931–8934.
(13) (a) Narasimhan, N. S.; Aidhen, I. S. Tetrahedron Lett. 1988, 29, 2987–
2988. (b) Bowman, W. R.; Heaney, H.; Jordan, B. M. Tetrahedron 1991, 47,
10119–10128. (c) Ganguly, A. K.; Wang, C. H.; David, M.; Bartner, P.; Chan,
T. M. Tetrahedron Lett. 2002, 43, 6865–6868.
(11) (a) Ohno, H.; Maeda, S.; Okumura, M.; Wakayama, R.; Tanaka, T.
Chem. Commun. 2002, 316–317. (b) Ohno, H.; Okumura, M.; Maeda, S.; Iwasaki,
H.; Wakayama, R.; Tanaka, T. J. Org. Chem. 2003, 68, 7722–7732.
(12) For related reactions, see: (a) Julia, M.; Malassine, B. Tetrahedron Lett.
1972, 13, 2495–2498. (b) Ishibashi, H.; Nakamura, N.; Ito, K.; Kitayama, S.;
Ikeda, M. Heterocycles 1990, 31, 1781–1784. (c) Yang, C.-C.; Chang, H.-T.;
Fang, J.-M. J. Org. Chem. 1993, 58, 3100–3105. (d) Citterio, A.; Sebastiano,
R.; Maronati, A.; Santi, R.; Bergamini, F. J. Chem. Soc., Chem. Commun. 1994,
1517–1518. (e) Boivin, J.; Yousfi, M.; Zard, S. Z. Tetrahedron Lett. 1997, 38,
5985–5988. (f) Dinesh, C. U.; Reissig, H.-U. Angew. Chem., Int. Ed. 1999, 38,
789–791. (g) Nandanan, E.; Dinesh, C. U.; Reissig, H.-U. Tetrahedron 2000,
56, 4267–4277. (h) Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Jones, K. Org.
Lett. 2000, 2, 2639–2641. (i) Berndt, M.; Reissig, H.-U. Synlett 2001, 1290–
1292. (j) Gross, S.; Reissig, H.-U. Synlett 2002, 2027–2030. (k) Gross, S.; Reissig,
H.-U. Org. Lett. 2003, 5, 4305–4307. (l) Berndt, M.; Hlobilova´, I.; Reissig, H.-
U. Org. Lett. 2004, 6, 957–960. (m) Blot, V.; Reissig, H.-U. Eur. J. Org. Chem.
2006, 4989–4992. (n) Blot, V.; Reissig, H.-U. Synlett 2006, 2763–2766. (o)
Aulenta, F.; Berndt, M.; Bru¨dgam, I.; Hartl, H.; So¨rgel, S.; Reissig, H.-U. Chem.
Eur. J. 2007, 13, 6047–6062. (p) Senthil Kumaran, R.; Reissig, H.-U. Synlett
2008, 991–994. (q) Wefelscheid, U. K.; Reissig, H.-U. AdV. Synth. Catal. 2008,
350, 65–69. (r) Aulenta, F.; Wefelscheid, U. K.; Bru¨dgam, I.; Reissig, H.-U.
Eur. J. Org. Chem. 2008, 2325–2335. For selected reviews on samarium diiodide
mediated reactions, see: (s) Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42,
6573–6614. (t) Molander, G. A.; Harris, C. R. Chem. ReV. 1996, 96, 307–338.
(u) Krief, A.; Laval, A.-M. Chem. ReV. 1999, 99, 745–777. (v) Steel, P. G.
J. Chem. Soc., Perkin Trans. 1 2001, 2727–2751. (w) Kagan, H. B. Tetrahedron
2003, 59, 10351–10372. (x) Berndt, M.; Gross, S.; Ho¨lemann, A.; Reissig, H.-
U. Synlett 2004, 422–438. (y) Jung, D. Y.; Kim, Y. H. Synlett 2005, 3019–
3032.
(14) (a) Black, M.; Gadogan, J. I. G.; McNab, H. J. Chem. Soc., Chem.
Commun. 1990, 395–396. (b) Harrowven, D. C.; Nunn, M. I. T. Tetrahedron
Lett. 1998, 39, 5875–5876. (c) Fiumana, A.; Jones, K. Tetrahedron Lett. 2000,
41, 4209–4211. (d) Zhang, W.; Pugh, G. Tetrahedron 2003, 59, 3009–3018. (e)
Alcaide, B.; Almendros, P.; Pardo, C.; Rodor´ıguez-Vicente, A.; Ruiz, M. P.
Tetrahedron 2005, 61, 7894–7906. (f) Clyne, M. A.; Aldabbagh, F. Org. Biomol.
Chem. 2006, 4, 268–277. (g) Crich, D.; Grant, D.; Krishnamurthy, V.; Patel, M.
Acc.Chem.Res.2007,40,453–463.(h)Foranintermolecularreaction:Mart´ınez-Barrasa,
V.; Garc´ıa de Viedma, A.; Burgos, C.; Alvarez-Builla, J. Org. Lett. 2000, 2,
3933–3935.
(15) (a) Bonfand, E.; Forslund, L.; Motherwill, W. B.; Va´zquez, S. Synlett
2000, 475–478. (b) Studer, A.; Bossart, M.; Vasella, T. Org. Lett. 2000, 2, 985–
988. (c) Harrowven, D. C.; Nunn, M. I. T.; Newman, N. A.; Fenwick, D. R.
Tetrahedron Lett. 2001, 42, 961–964. (d) Clive, D. L. J.; Kang, S. J. Org. Chem.
2001, 66, 6083–6091. (e) Leardini, R.; McNab, H.; Minozzi, M.; Nanni, D.
J. Chem. Soc., Perkin Trans. 1 2001, 1072–1078. (f) For a recent review, see:
Studer, A.; Bossart, M. Tetrahedron 2001, 57, 9649–9667.
(16) (a) Hey, D. H.; Jones, G. H.; Perkins, M. J. J. Chem. Soc. C 1971,
116–122. (b) Crich, D.; Hao, X.; Lucas, M. A. Org. Lett. 1999, 1, 269–271. (c)
Escolano, C.; Jones, K. Tetrahedron Lett. 2000, 41, 8951–8955. (d) Nu´n˜ez, A.;
Sa´nchez, A.; Burgos, C.; Alvarez-Builla, J. Tetrahedron 2007, 63, 6774–6783.
(e) Bowman, W. R.; Storey, M. D. Chem. Soc. ReV. 2007, 36, 1803–1822.
(17) (a) Caddick, S.; Aboutayab, K.; Jenkins, K.; West, R. I. J. Chem. Soc.,
Perkin Trans. 1 1996, 675–682. (b) Zhang, W.; Pugh, G. Tetrahedron Lett. 2001,
42, 5613–5615. (c) Harrowven, D. C.; L’Helias, N.; Moseley, J. D.; Blumire,
N. J.; Flanagan, S. R. Chem. Commun. 2003, 2658–2659.
(18) For a preliminary communication, see: Ohno, H.; Iwasaki, H.; Eguchi,
T.; Tanaka, T. Chem. Commun. 2004, 2228–2229.
7146 J. Org. Chem. Vol. 73, No. 18, 2008