Organic Letters
Letter
(6) (a) Dreis, A. M.; Douglas, C. J. Catalytic Carbon−Carbon σ
Bond Activation: An Intramolecular Carbo-Acylation Reaction with
Acylquinolines. J. Am. Chem. Soc. 2009, 131, 412−413. (b) Wentzel,
M. T.; Reddy, V. J.; Hyster, T. K.; Douglas, C. J. Chemoselectivity in
catalytic C-C and C-H bond activation: controlling intermolecular
carboacylation and hydroarylation of alkenes. Angew. Chem., Int. Ed.
2009, 48, 6121−6123.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
(7) Lei, Z.; Li, H.; Li, Y.; Zhang, X.; Chen, K.; Wang, X.; Sun, J.; Shi,
Z.-J. Extrusion of CO from aryl ketones: rhodium(I)-catalyzed C-C
bond cleavage directed by a pyridine group. Angew. Chem., Int. Ed.
2012, 51, 2690−2694.
Notes
The authors declare no competing financial interest.
(8) (a) Xu, T.; Savage, N. A.; Dong, G. Rhodium(I)-Catalyzed
Decarbonylative Spirocyclization through C-C Bond Cleavage of
Benzocyclobutenones: An Efficient Approach to Functionalized
Spirocycles. Angew. Chem., Int. Ed. 2014, 53, 1891−1895. (b) Xu,
T.; Dong, G. Coupling of sterically hindered trisubstituted olefins and
benzocyclobutenones by C-C activation: total synthesis and structural
revision of cycloinumakiol. Angew. Chem., Int. Ed. 2014, 53, 10733−
10736. (c) Zeng, R.; Dong, G. Rh-Catalyzed Decarbonylative
Coupling with Alkynes via C−C Activation of Isatins. J. Am. Chem.
Soc. 2015, 137, 1408−1411. (d) Zhou, X.; Dong, G. (4 + 1) vs (4 +
2): Catalytic Intramolecular Coupling between Cyclobutanones and
Trisubstituted Allenes via C−C Activation. J. Am. Chem. Soc. 2015,
137, 13715−13721. (e) Chen, P.; Xu, T.; Dong, G. Divergent
syntheses of fused β-naphthol and indene scaffolds by rhodium-
catalyzed direct and decarbonylative alkyne-benzocyclobutenone
couplings. Angew. Chem., Int. Ed. 2014, 53, 1674−1678. (f) Lu, G.;
Fang, C.; Xu, T.; Dong, G.; Liu, P. Computational Study of Rh-
Catalyzed Carboacylation of Olefins: Ligand-Promoted Rhodacycle
Isomerization Enables Regioselective C−C Bond Functionalization of
Benzocyclobutenones. J. Am. Chem. Soc. 2015, 137, 8274−8283.
(g) Deng, L.; Chen, M.; Dong, G. Concise Synthesis of (−)-Cyclo-
clavine and (−)-5-epi-Cycloclavine via Asymmetric C−C Activation.
J. Am. Chem. Soc. 2018, 140, 9652−9658. (h) Zhou, X.; Ko, H.; Dong,
G. Synthesis of Bridged Cyclopentane Derivatives by Catalytic
Decarbonylative Cycloaddition of Cyclobutanones and Olefins.
Angew. Chem., Int. Ed. 2016, 55, 13867−13871. (i) Zhou, X.; Dong,
G. Nickel-Catalyzed Chemo- and Enantioselective Coupling between
Cyclobutanones and Allenes: Rapid Synthesis of [3.2.2] Bicycles.
Angew. Chem., Int. Ed. 2016, 55, 15091−15095. (j) Deng, L.; Jin, L.;
Dong, G. Fused-Ring Formation by an Intramolecular ″Cut-and-Sew″
Reaction between Cyclobutanones and Alkynes. Angew. Chem., Int.
Ed. 2018, 57, 2702−2706. (k) Deng, L.; Xu, T.; Li, H.; Dong, G.
Enantioselective Rh-Catalyzed Carboacylation of C = N Bonds via
C−C Activation of Benzocyclobutenones. J. Am. Chem. Soc. 2016,
138, 369−374. (l) Ko, H. M.; Dong, G. Cooperative activation of
cyclobutanones and olefins leads to bridged ring systems by a catalytic
[4 + 2] coupling. Nat. Chem. 2014, 6, 739−744. (m) Sun, T.; Zhang,
Y.; Qiu, B.; Wang, Y.; Qin, Y.; Dong, G.; Xu, T. Rhodium(I)-
Catalyzed Carboacylation/Aromatization Cascade Initiated by Re-
gioselective C-C Activation of Benzocyclobutenones. Angew. Chem.,
Int. Ed. 2018, 57, 2859−2863.
(9) Wang, J.; Chen, W.; Zuo, S.; Liu, L.; Zhang, X.; Wang, J. Direct
exchange of a ketone methyl or aryl group to another aryl group
through C-C bond activation assisted by rhodium chelation. Angew.
Chem., Int. Ed. 2012, 51, 12334−12338.
(10) Morioka, T.; Nishizawa, A.; Furukawa, T.; Tobisu, M.; Chatani,
N. Nickel-Mediated Decarbonylation of Simple Unstrained Ketones
through the Cleavage of Carbon−Carbon Bonds. J. Am. Chem. Soc.
2017, 139, 1416−1419.
(11) (a) Whittaker, R.; Dong, G. Controlled Rh-Catalyzed Mono-
and Double-decarbonylation of Alkynyl α-Diones To Form
Conjugated Ynones and Disubstituted Alkynes. Org. Lett. 2015, 17,
5504−5507. (b) Dermenci, A.; Whittaker, R. E.; Dong, G. Rh(I)-
Catalyzed Decarbonylation of Diynones via C−C Activation:
Orthogonal Synthesis of Conjugated Diynes. Org. Lett. 2013, 15,
2242−2245. (c) Dermenci, A.; Whittaker, R. E.; Gao, Y.; Cruz, F. A.;
Yu, Z.-X.; Dong, G. Rh-catalyzed decarbonylation of conjugated
ynones via carbon−alkyne bond activation: reaction scope and
ACKNOWLEDGMENTS
■
This research was supported by Henan University, the
National Natural Science Foundation of China (21801061).
Professor Pengtao Ma (HNU) is thanked for the X-ray
structure. Professor Xunyong Liu (LDU) is thanked for the
helpful discussion on optical studies.
REFERENCES
■
(1) Activation of Unreactive Bonds and Organic Synthesis; Top.
Organomet. Chem. 3; Murai, S., Ed.; Springer-Verlag: Berlin, 1999.
(2) (a) Jun, C. H. Transition metal-catalyzed carbon−carbon bond
activation. Chem. Soc. Rev. 2004, 33, 610−618. (b) Satoh, T.; Miura,
M. Catalytic Processes Involving β-Carbon Elimination. Top.
Organomet. Chem. 2005, 14, 1−20. (c) Jun, C. H.; Park, J. W.
Directed C − C Bond Activation by Transition Metal Complexes.
Top. Organomet. Chem. 2007, 24, 117−143. (d) Necas, D.; Kotora, M.
Rhodium-Catalyzed C-C Bond Cleavage Reactions. Curr. Org. Chem.
2007, 11, 1566−1591. (e) Korotvicka, A.; Necas, D.; Kotora, M.
Rhodium-catalyzed C-C Bond Cleavage Reactions - An Update. Curr.
Org. Chem. 2012, 16, 1170−1214. (f) Seiser, T.; Saget, T.; Tran, D.
N.; Cramer, N. Cyclobutanes in catalysis. Angew. Chem., Int. Ed. 2011,
50, 7740−7752. (g) Jiao, L.; Yu, Z.-X. Vinylcyclopropane Derivatives
in Transition-Metal-Catalyzed Cycloadditions for the Synthesis of
Carbocyclic Compounds. J. Org. Chem. 2013, 78, 6842−6848.
(h) Dermenci, A.; Coe, J. W.; Dong, G. Direct activation of relatively
unstrained carbon−carbon bonds in homogeneous systems. Org.
Chem. Front. 2014, 1, 567−581. (i) Dermenci, A.; Dong, G.
Decarbonylative C-C bond forming reactions mediated by transition
metals. Sci. China: Chem. 2013, 56, 685−701. (j) Chen, F.; Wang, T.;
Jiao, N. Recent advances in transition-metal-catalyzed functionaliza-
tion of unstrained carbon-carbon bonds. Chem. Rev. 2014, 114,
8613−8661. (k) C−C Bond Activation; Topics in Current Chemistry;
Dong, G., Ed.; Springer: Berlin, 2014; Vol. 346. (l) Souillart, L.;
Cramer, N. Catalytic C−C Bond Activations via Oxidative Addition
to Transition Metals. Chem. Rev. 2015, 115, 9410−9464. (m) Mur-
akami, M.; Ishida, N. Potential of Metal-Catalyzed C−C Single Bond
Cleavage for Organic Synthesis. J. Am. Chem. Soc. 2016, 138, 13759−
13769. (n) Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J. Catalytic
activations of unstrained C−C bond involving organometallic
intermediates. Chem. Soc. Rev. 2018, 47, 7078−7115.
(3) Kaneda, K.; Azuma, H.; Wayaku, M.; Tehanishi, S. Decarbon-
ylation of α-and β-Diketones Catalyzed by Rhodium Compounds.
Chem. Lett. 1974, 3, 215−216.
(4) (a) Murakami, M.; Itahashi, T.; Ito, Y. Catalyzed Intramolecular
Olefin Insertion into a Carbon−Carbon Single Bond. J. Am. Chem.
Soc. 2002, 124, 13976−13977. (b) Murakami, M.; Ashida, S.;
Matsuda, T. Nickel-Catalyzed Intermolecular Alkyne Insertion into
Cyclobutanones. J. Am. Chem. Soc. 2005, 127, 6932−6933.
(5) (a) Suggs, J. W.; Jun, C.-H. Directed cleavage of carbon-carbon
bonds by transition metals: the α-bonds of ketones. J. Am. Chem. Soc.
1984, 106, 3054−3056. (b) Suggs, J. W.; Jun, C.-H. Synthesis of a
chiral rhodium alkyl via metal insertion into an unstrained C-C bond
and use of the rate of racemization at carbon to obtain rhodium-
carbon bond dissociation energy. J. Am. Chem. Soc. 1986, 108, 4679−
4681.
E
Org. Lett. XXXX, XXX, XXX−XXX