4762
J. Peuralahti et al. / Bioorg. Med. Chem. Lett. 16 (2006) 4760–4762
Table 1. Comparison of the performance of the tracer 15 and the corresponding DTPA derivative 16–17
Tracer
15
16
17
Analytical sensitivitya
0.42 lL/dL
0.35 lL/dL
0.63 lL/dL
Correlation to AutoDELFIA neonatal T4 assay
Mean bias
Interference with EDTAb
y = 1.02 · À0.37, R = 0.87, n = 27
y = 1.2 · À3.22, R = 0.94, n = 27
À0.7%
À0.1%
No
No
Yes
a Analytical sensitivity was detected as 2 SD below the mean of the zero standard measurement value.
b Tested with EDTA concentration up to 12 mg/mL.
9. Volkert, W. A.; Hoffman, T. J. Chem. Rev. 1999, 99,
2269.
interference of EDTA-containing samples was studied.
The results are summarized in Table 1.
10. Fichna, J.; Janecka, A. Bioconjugate Chem. 2003, 14, 3.
11. Peuralahti, J.; Jaakkola, L.; Mukkala, V.-M.; Hovinen, J.
Bioconjugate Chem. 2006, 17, 855.
12. Rogers, B. E.; Anderson, C. J.; Connett, J. M.; Guo, L.
W.; Edwards, W. B.; Sherman, E. L.; Zinn, K. R.; Welch,
M. J. Bioconjugate Chem. 1996, 7, 511.
The shapes of the calibration curves obtained with opti-
mized amounts of tracer and antiserum were slightly dif-
ferent with the three tracers. All tracers were sensitive
enough at clinically important range. Assays with the
tested tracers compared well to the AutoDELFIA
Neonatal T4 assay and no significant level differences
were obtained. In strict contrast to tracer 17, neither
15 nor 16 was sensitive to EDTA. Also their stabilities
under acidic conditions were similar.
13. Rosendale, B. E.; Jarrett, D. B. Clin. Chem. 1985, 31,
1965.
14. Peuralahti, J.; Suonpa¨a¨, K.; Blomberg, K.; Mukkala,
V.-M.; Hovinen, J. Bioconjugate Chem. 2004, 15, 927.
15. Hanaoka, K.; Kikuchi, K.; Urano, Y.; Narazaki, M.;
Yokawa, T.; Sakamoto, S.; Yamaguchi, K.; Nagano, T.
Chem. Biol. 2002, 9, 1027.
16. Feng, J.; Sun, G.; Pei, F.; Liu, M. Bioorg. Med. Chem.
2003, 11, 3359.
17. Konings, M. S.; Dow, W. C.; Love, D. B.; Raymond, K.
N.; Quay, S. C.; Rocklage, S. M. Inorg. Chem. 1990, 29,
1488.
Accordingly, two of the DTPA acetates can be substitut-
ed with carboxamido functions without loss of the
desired chelate stability. The neutral DTPA chelates
synthesized here are as stable as the corresponding
charged derivatives. Since the preliminary results are
promising we are currently synthesizing tracers labeled
with several neutral DTPA derivatives.
18. Paul-Roth, C.; Raymond, K. N. Inorg. Chem. 1995, 34,
1408.
19. Corson, D. T.; Meares, C. F. Bioconjugate Chem. 2000, 11,
292.
20. Peuralahti, J.; Hakala, H.; Mukkala, V.-M.; Hurskainen,
P.; Mulari, O.; Hovinen, J. Bioconjugate Chem. 2002, 13,
870.
21. Ram, S.; Spicer, L. D. Synth. Commun. 1987, 17, 415.
22. Takalo, H.; Mukkala, V.-M.; Mikola, H.; Liitti, P.;
Hemmila¨, I. Bioconjugate Chem. 1994, 5, 278.
23. The chelates (ca. 1 mg) were dissolved either in Inducer or
Enhanchement Solution (PerkinElmer), and the dissocia-
tion of europium at 25 ꢁC was followed using a time-
resolved fluorometer (Victor2V).
24. Compound 14 was synthesized by allowing L-thyroxine to
react with Fmoc-aminohexanoic acid N-hydroxysuccinate
(1.1 equiv) in dry DMF in dark (1 h at rt). Piperidine was
then added (removal of Fmoc group), and the reaction
was allowed to proceed for 30 min at rt before being
concentrated in vacuo. The title compound was obtained
by precipitation from methanol.
References and notes
1. Aime, S.; Botta, M.; Fasano, M.; Terreno, E. Chem. Soc.
Rev. 1998, 27, 19.
2. Caravan, P.; Elison, J. J.; McMurry, T. J.; Lauffer, R. B.
Chem. Rev. 1999, 99, 2293.
3. Woods, M.; Kovacz, Z.; Sherry, A. D. J. Supramol. Chem.
2002, 2, 1.
4. Runge, V. M. J. Magn. Res. Imaging 2000, 12, 205.
5. Anderson, C. J.; Welch, M. J. Chem. Rev. 1999, 99, 2219.
6. Hemmila¨, I.; Blomberg, K.; Mukkala, V.-M.; Hakala, H.
PCT WO 03/076939A1.
7. Lorberboym, M.; Lampl, Y.; Sadeh, M. J. Nucl. Med.
2003, 44, 1898.
8. Galuska, L.; Levovey, L.; Szucs-Farkas, Z.; Garai, I.;
Szabo, J.; Varga, J.; Nagy, E. V. Nucl. Med. Commun.
2002, 23, 1211.