N. Zhou et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1528–1531
1531
6. Krall, J. F.; Barrett, J. D.; Jamgotchian, N.; Korenman, S. G. J. Endocrinol. 1984,
102, 329.
7. Ushikubi, F.; Segi, E.; Sugimoto, Y.; Murata, T.; Matsuoka, T.; Kobayashi, T.;
Hizaki, H.; Tuboi, K.; Katsuyama, M.; Ichikawa, A.; Tanaka, T.; Yoshida, N.;
Narumiya, S. Nature 1998, 395, 281.
8. Xin, L.; Geller, E. B.; Bastepe, M.; Raffa, R. B.; Mao, G. F.; Ashby, B.; Adler, M. W. J.
Therm. Biol. 2000, 25, 77.
9. Bilson, H. A.; Mitchell, D. L.; Ashby, B. FEBS Lett. 2004, 572, 271.
10. Gudmundsson, G.; Matthiasson, S. E.; Arason, H.; Johannsson, H.; Runarsson, F.;
Bjarnason, H.; Helgadottir, K.; Thorisdottir, S.; Ingadottir, G.; Lindpaintner, K.;
Sainz, J.; Gudnason, V.; Frigge, M. L.; Kong, A.; Gulcher, J. R.; Stefansson, K. Am.
J. Hum. Genet. 2002, 70, 586.
11. (a) Fabre, J.; Nguyen, M.; Athirakul, K.; Coggins, K.; McNeish, J. D.; Austin, S.;
Parise, L. K.; FitzGerald, G. A.; Coffman, T. M.; Koller, B. H. J. Clin. Invest. 2001,
107, 603; (b) Gross, S.; Tilly, P.; Hentsch, D.; Vonesch, J.-L.; Fabre, J.-E. J. Exp.
Med. 2007, 204, 311.
160
120
80
FSK
FSK+PGE2
40
Cmpd (8b) EC50 (nM) = 26.1
0
0.0001 0.001
0.01
0.1
1
10
100
1000 10000 100000
12. (a) Gallant, M.; Belley, M.; Carriere, M.-C.; Chateauneuf, A.; Denis, D.; Lachance,
N.; Lamontagne, S.; Metters, K. M.; Sawyer, N.; Slipetz, D.; Truchon, J. F.;
Labelle, M. Bioorg. Med. Chem. Lett. 2003, 13, 3813; (b) Gallant, M.; Carriere, M.-
C.; Chateauneuf, A.; Denis, D.; Gareau, Y.; Godbout, C.; Greig, G.; Juteau, H.;
Lachance, N.; Lamontagne, S.; Metters, K. M.; Rochette, C.; Ruel, R.; Slipetz, D.;
Sawyer, N.; Tremblay, N.; Labelle, M. Bioorg. Med. Chem. Lett. 2002, 12, 2583; (c)
Juteau, H.; Gareau, Y.; Labelle, M.; Sturino, C. F.; Sawyer, N.; Tremblay, N.;
Lamontagne, S.; Carriere, M.-C.; Denis, D.; Metters, K. M. Bioorg. Med. Chem.
2001, 9, 1977; (d) Juteau, H.; Gareau, Y.; Labelle, M.; Lamontagne, S.; Tremblay,
N.; Carriere, M.-C.; Sawyer, N.; Denis, D.; Metters, K. M. Bioorg. Med. Chem. Lett.
2001, 11, 747.
13. Zhou, N.; Zeller, W.; Keyvan, M.; Krohn, M.; Anderson, H.; Mishra, R.; Zhang, J.;
Onua, E.; Ramirez, J.; Palsdottir, G.; Halldorsdottir, G.; Andresson, T.; Gurney,
14. O’Connell, M.; Zeller, W.; Burgeson, J.; Mishra, R.; Ramirez, J.; Kiselyov, A.;
Andresson, T.; Gurney, M.; Singh, J. Bioorg. Med. Chem. Lett. doi:10.1016/
µM
Figure 2. Dose–response of compound (8b) on CHO-K1 cells transfected with hEP3D
receptor in normal buffer.
Table 4
Mouse iv exposure screen
Compound Average plasma
concentration (ng/mL)
Average brain
concentration (ng/g)
Ratio
plasma/
brain
7b
7c
3420
1518
55.7
29.1
61.4
52.2
15. Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799.
16. Tyson, F. T.; Shaw, J. T. J. Am. Chem. Soc. 1952, 74, 2273.
Compounds were dosed in NMRI mice, n = 3 per compound, at 2 mg/kg in 10%
solutol/PBS formulation. Samples were analyzed at 15 min.
17. Singh, J.; Zeller, W.; Zhou, N.; Hategen, G.; Mishra, R.; Polozov, A.; Yu, P.; Onua,
E.; Zhang, J.; Zembower, D.; Kiselyov, A.; Ramírez, J.; Sigthorsson, G.; Bjornsson,
J.; Thorsteinnsdottir, M.; Andrésson, T.; Bjarnadottir, M.; Magnusson, O.;
Stefansson, K.; Gurney, M. ACS Chem. Biol., accepted for publication.
18. Ref. 12c lists data which includes determinations of binding affinity to the EP3
receptor in the presence of 0.05% HSA. This data indicates a propensity of these
compounds to strongly bind to serum proteins. Hence, we found it imperative
to routinely screen each strongly potent compound from the normal buffer
assay in the presence of 10% human serum to provide useful information on
the free fraction of the compound available for future in vivo examinations.
19. Previous studies have shown that strongly electron rich heteroaromatic Ar1
substituents of these acylsulfonamides suffer from poorer binding affinity to
the EP3 receptor in normal buffer in addition to exhibiting a high propensity to
suffer plasma protein binding. For an example, refer to structures 7g and 8g in
Ref. 13.
20. Two of our lead compounds, labeled 7aa and 8aa in Ref. 13, exhibited EC50 in
the rat platelet aggregation studies of 358 nM and 136 nM, respectively.
21. The hEP3II (also known as hEP3D) receptor isoform exhibited slightly higher
affinity for PGE2 and higher inhibitory efficiency compared to the other human
EP3 isoforms tested (data not shown). Therefore, hEP3II was selected for both
the primary binding screening assay and the functional cell-based assay.
22. Stably transfected CHO-K1 cells expressing the hEP3II receptor were plated into
96-well plates at a cell density of 105 cells/well and cultured overnight at 37 °C,
5% CO2 in culture media supplemented with 10% FIBS, 2% PS and 1 mg/mL
Geneticin. Cells were washed once with PBS and pre-incubated in fresh, serum-
and antibiotic-free medium containing 1 mM IBMX (3-isobutyl-1-
methylxanthine, Sigma) for 30 min at 37 °C. After pre-incubation, cells were
incubated with PGE2 (5 Â 10À9 M) and FSK (5 Â 10À6 M, Sigma), in absence or
presence of the testing compound at the appropriate concentrations (dose–
response 10À4 –10À13 M). Cells were then incubated for an additional 10 min at
37 °C. Reactions were terminated by aspiration of medium and addition of
firm EP3 receptor antagonism.21,22 A representative dose–response
curve is shown in Figure 2 for compound 8b (EC50 = 26.1 nM).
SAR studies and initial follow-up evaluation of the synthesized
3,4-disubstituted indoles prioritized the compounds 7b and 7c for
further studies. Both of these compounds gave relatively low brain
exposures while still showing relatively high plasma levels at
15 min post dose, plasma concentration of compounds (7b,
6.6 lM and 7c, 2.8 lM). These data favored our intended therapeu-
tic use as anti-thrombotic agents (Table 4).
The data presented here supported our hypothesis that indole
derived analogs representing peri-substitution pattern as repre-
sented by series A, B and C provides a sound approach to potent
and isoform selective hEP3 antagonists. For the 3-acrylamide-4-
aryloxyindole series, an optimized compound (7c) was selected
as both potent and selective hEP3 receptor antagonist with sound
functional activity in platelet aggregation studies.
References and notes
1. Abramovitz, M.; Adam, A.; Boie, Y.; Godbout, C.; Lamontagne, S.; Rochette, C.;
Sawyer, N.; Tremblay, N. M.; Belley, M.; Gallant, M.; Dufresne, C.; Gareau, Y.;
Ruel, R.; Juteau, H.; Labelle, M. Biochim. Biophys. Acta 2000, 1483, 285.
2. Kiryiama, A.; Ushukubi, K.; Kobayashi, T.; Hirata, M.; Sugimoto, Y.; Narumiya, S.
Br. J. Pharmacol. 1997, 122, 217.
200 ll of lysis buffer 1B (cAMP EIA System kit, Amersham). cAMP levels were
determined using a commercially available cAMP EIA System kit (Amersham).
Raw OD values, were transformed into amount of cAMP (fmol/well) using
GraphPad Prism 3.02 for Windows (GraphPad Software). For EC50 calculations
in dose–response experiments, sigmoid non-linear regressions were
performed.
3. Watson, S. Arkinstall, Prostanoids in the G Protein-Linked Receptor Factsbook;
Academic Press, 1994. p 239.
4. Garcia-Perez, A.; Smith, W. L. J. Clin. Invest. 1984, 74, 63.
5. Chen, M. C. Y.; Amirian, D. A.; Toomey, M.; Sanders, M. J.; Soll, A. H.
Gastroenterology 1988, 94, 1121.