10.1002/anie.201812192
Angewandte Chemie International Edition
COMMUNICATION
In summary, we have developed a leaving group assisted
strategy for generating a portfolio of fluoroalkyl radicals from
redox-active N-hydroxybenzimidoyl chloride esters, which has
been
successfully
employed
in
the
photoinduced
hydrofluorination and arylation of unactivated alkenes.
Compared with the commonly used fluorinating reagents, the
fluorine-bearing NHBC esters are air-stable non-volatile
crystalline solid, readily achievable in large quantities from their
fluorocarboxylic acid, and easy to initiate under mild
photocatalytic conditions. Further study of NHBC-derived RAEs
is underway in our laboratory.
Acknowledgements
Professor Fengling Qing and Jinbo Hu (SIOC) are gratefully
acknowledged for helpful discussion. This work was supported
by the National Natural Science Foundation of China (No.
21472082, No. 21402088and No. 21772085), the Fundamental
Research Funds for the Central Universities (No.
020514380148), the National Thousand Young Talents Program,
the Jiangsu Specially-Appointed Professor Plan, and the NSF of
Jiangsu Province (BK20170631) in China.
Scheme 3. Further Elaborations.
To gain insight into this fluoroalkyl radical formation, we
conducted computational studies using DFT calculations (M06-
2X with solvation).20-22 We compared the thermodynamics for the
generation of nitrogen radical or oxygen radical. As shown in
Figure 2A, when Sanford’s CF3-NHPI reagent gets an electron,
the formation of PhthN radical and TFA anion is favored by 14.0
kcal mol-1 as compared to the formation of TFA radical and
PhthN anion. This is consistent with their experiments.12 In the
case of our CF3-bearing NHBC ester, the radical formation
selectivity is reversed (Figure 2B). Calculations indicate that the
chloro-imine anion is not a minimum in the potential energy
surface, which decomposes into benzonitrile and chloride
spontaneously. Since chloride is a good leaving group, this
process is highly exergonic, making the formation of TFA radical
1.2 kcal mol-1 lower in Gibbs free energy than that for TFA anion.
Therefore, CF3 radical would be generated predominantly from
the decarboxylation of TFA radical, while a small amount of
chlorine radical would be formed from the decomposition of
chloro-imine radical. This accounts for our experimental results
and confirms our hypothesis on the leaving group assisting
effect. Similar trends are observed for perflluoroalkyl radicals
C2F5• and C3F7•, which are favored by 0.3 and 1.0 kcal mol-1 in
Gibbs free energy respectively. In the case of diflluoromethyl
radical, a 7.3 kcal mol-1 Gibbs free energy difference was
expected, indicating that the generation of •CF2H is extremely
favorable for its NHBC ester.
Keywords: Fluoroalkylation • photoredox • olefins • imidoyl
chloride
[1]
(a) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115,
826-870; (b) J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A.
E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu. Chem. Rev. 2014,
114, 2432-2506; (c) J. Nie, H.-C. Guo, D. Cahard, J.-A. Ma. Chem. Rev.
2011, 111, 455-529; (d) K. Müller, C. Faeh, F. Diederich. Science 2007,
317, 1881-1886.
[2]
(a) Z. Zhang, H. Martinez, W. R. Dolbier. J. Org. Chem. 2017, 82, 2589-
2598; (b) Z. Wu, D. Wang, Y. Liu, L. Huan, C. Zhu. J. Am. Chem. Soc.
2017, 139, 1388-1391; (c) G. H. Lonca, D. Y. Ong, T. M. H. Tran, C.
Tejo, S. Chiba, F. Gagosz. Angew. Chem., Int. Ed. 2017, 56, 11440-
11444; (d) Y. Liu, H. Wu, Y. Guo, J. C. Xiao, Q. Y. Chen, C. Liu. Angew.
Chem., Int. Ed. 2017, 56, 15432-15435; (e) L. Huang, J.-S. Lin, B. Tan,
X.-Y. Liu. ACS Catal. 2015, 5, 2826-2831; (f) W. Kong, M. Casimiro, N.
Fuentes, E. Merino, C. Nevado. Angew. Chem., Int. Ed. 2013, 52,
13086-13090; (g) H. Egami, S. Kawamura, A. Miyazaki, M. Sodeoka.
Angew. Chem., Int. Ed. 2013, 52, 7841-7844; (h) R. Zhu, S. L.
Buchwald. J. Am. Chem. Soc. 2012, 134, 12462-12465; (i) X. Wang, Y.
Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang, J. Wang. J. Am. Chem. Soc.
2011, 133, 16410-16413.
[3]
S. Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana, M. O’Duill, K.
Wheelhouse, G. Rassias, M. Médebielle, V. Gouverneur. J. Am. Chem.
Soc. 2013, 135, 2505-2508.
[4]
[5]
X. Wu, L. Chu, F. L. Qing. Angew. Chem., Int. Ed. 2013, 52, 2198-2202.
(a) L. Zhu, L.-S. Wang, B. Li, B. Fu, C.-P. Zhang, W. Li. Chem.
Commun. 2016, 52, 6371-6374; (b) D. J. Wilger, N. J. Gesmundo, D. A.
Nicewicz. Chem. Sci. 2013, 4, 3160-3165.
[6]
[7]
[8]
C. Depecker, H. Marzouk, S. Trevin, J. Devynck. New. J. Chem. 1999,
23, 739-742
J. Lin, Z. Li, J. Kan, S. Huang, W. Su, Y. Li. Nat. Commun. 2017, 8,
14353.
(a) G. Shi, C. Shao, S. Pan, J. Yu, Y. Zhang. Org. Lett. 2015, 17, 38-41;
(b) M. Chen, S. L. Buchwald. Angew. Chem., Int. Ed. 2013, 52, 11628-
11631, (c) T. Schareina, X.-F. Wu, A. Zapf, A. Cotté, M. Gotta, M.
Beller. Top. Catal. 2012, 55, 426-431; (d) Y. Li, T. Chen, H. Wang, R.
Zhang, K. Jin, X. Wang, C. Duan. Synlett 2011, 2011, 1713-1716; (e) B.
R. Langlois, N. Roques. J. Fluorine Chem. 2007, 128, 1318-1325.
Figure 2. DFT Study on the selectivity of radical formation.
This article is protected by copyright. All rights reserved.