A R T I C L E S
Tahara et al.
Figure 1. Chemical structures of the parent molecule [12]DBA (1) and [12]DBAs functionalized with electron-withdrawing groups (the tricyano[12]DBA
2 and dodecafluoro[12]DBA 3) and with electron-donating groups (the tris(dialkylamino)[12]DBAs 4a-d and hexamethoxy[12]DBA 5).
conjugation with the trigonal shape by benzoannulation leads
to a nanographene system,10 but insertion of triple bonds leads
to dehydrobenzo[12]annulene ([12]DBA)11 and dehydrobenzo-
[18]annulene ([18]DBA),12 which consist of weakly antiaromatic
12-membered and aromatic 18-membered rings, respectively,
that are stabilized by the three fused aromatic rings.13 Contrary
to the triphenylene and [18]DBA14,15 systems, little has been
done with respect to systematic electronic modulation of the
[12]DBA π system,11d though [12]DBAs have currently become
subjects of interest in supramolecular chemistry involving
formation of liquid crystals,17 vesicles,18 and two-dimensional
(2D) molecular networks at solid-liquid interfaces.19 There-
fore, there is plenty of room to create novel materials util-
izing the assembly of appropriately functionalized triangular
[12]DBAs.
Whitesides and co-workers20 proposed the rosette structure
consisting of cyanuric acid and melamine and performed
pioneering work on the formation of supramolecular complexes
between derivatives of these compounds. Later on, Rao and co-
workers confirmed the formation of the 2D rosette structure in
a crystal prepared by a hydrothermal synthesis.21 Since then,
rosette units have been employed for the construction of many
supramolecular assemblies, such as a tubular assembly22 and a
monolayer on a surface.23
Motivated by the possible formation of supramolecular
assemblies that reflect the unique C3-symmetric structure of the
[12]DBA core, we planned to prepare electronically tuned
[12]DBAs. Toward this end, we designed [12]DBAs substituted
with electron-donating groups (such as the tris(dialkyl-
amino)[12]DBAs 4a-d) or electron-withdrawing groups (such
as tricyano[12]DBA 2 and dodecafluoro[12]DBA 3) (Figure 1).
We expected that the supramolecular structures would be
affected by not only charge transfer but also specific intermo-
lecular interactions between the functional groups. Analysis of
the superstructures in crystals of 2, 3, and 4b revealed that they
form distinct packing structures: a perfect 2D sheet structure
for 2, a tilted-stack structure for 3, and a ladder-type 2D structure
for 4b, depending on the features of the functionalities.
Moreover, we found that a 1:1 charge-transfer complex between
3 and 4a formed a 2D triple-layered rosette structure consisting
of two different trimeric molecular sandwiches containing 3 and
4a in 2:1 and 1:2 ratios. The two trimers together with two
One of the intriguing molecular assemblies based on a C3-
symmetric trigonal molecular unit is a bimolecular rosette.
(10) (a) Feng, X.; Wu, J.; Ai, M.; Pisula, W.; Zhi, L.; Rabe, J. P.; Mu¨llen,
K. Angew. Chem., Int. Ed. 2007, 46, 3033–3036. (b) Fujioka, Y. Bull.
Chem. Soc. Jpn. 1985, 58, 481–489.
(11) (a) Campbell, I. D.; Eglinton, G.; Henderson, W.; Raphael, R. A. Chem.
Commun. 1996, 87–89. (b) Staab, H. A.; Graf, F. Tetrahedron Lett.
1966, 7, 751–757. (c) Huynh, C.; Linstrumelle, G. Tetrahedron 1988,
44, 6337–6344. (d) Iyoda, M.; Vorasingha, A.; Kuwatani, Y.; Yoshida,
M. Tetrahedron Lett. 1998, 39, 4701–4704. (e) Iyoda, M.; Sirinintasak,
S.; Nishiyama, Y.; Vorasingha, A.; Sultana, F.; Nakao, K.; Kuwatani,
Y.; Matsuyama, H.; Yoshida, M.; Miyake, Y. Synthesis 2004, 1527–
1531. (f) Kehoe, J. M.; Kiley, J. H.; English, J. J.; Johnson, C. A.;
Peterson, R. C.; Haley, M. M. Org. Lett. 2000, 2, 969–972.
(12) (a) Behr, O. M.; Eglinton, G.; Galbraith, A. R.; Raphael, R. A. J. Chem.
Soc. 1960, 3614–3625. (b) Haley, M. M.; Brand, S. C.; Pak, J. J.
Angew. Chem., Int. Ed. Engl. 1997, 36, 836–838. (c) Wan, W. B.;
Brand, S. C.; Pak, J. J.; Haley, M. M. Chem.sEur. J. 2000, 6, 2044–
2052.
(16) (a) Kinder, J. D.; Tessier, C. A.; Youngs, W. J. Synlett 1993, 149–
ˇ
150. (b) Miljanic´, O. S.; Vollhardt, K. P. C.; Whitener, G. D. Synlett
2003, 29–34. (c) Li, Y.; Zhang, J.; Wang, W.; Miao, Q.; She, X.;
Pan, X. J. Org. Chem. 2005, 70, 3285–3287. (d) Zhang, W.; Brombosz,
S. M.; Mendoza, J. L.; Moore, J. S. J. Org. Chem. 2005, 70, 10198–
10201.
(13) For recent reviews on dehydrobenzoannulenes, see: (a) Youngs, W. J.;
Tessier, C. A.; Bradshaw, J. D. Chem. ReV. 1999, 99, 3153–3180. (b)
Spitler, E. L.; Johnson, C. A.; Haley, M. M. Chem. ReV. 2006, 106,
5344–5386. (c) Tobe, Y.; Sonoda, M. In Modern Cyclophane
Chemistry; Gleiter, R., Hopf, H., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; pp 1-40. (d) Jones, C. S.; O’Connor, M. J.; Haley,
M. M. In Acetylene Chemistry: Chemistry, Biology and Material
Science; Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; Wiley-
VCH: Weinheim, Germany, 2005; pp 303-385.
(14) (a) Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59,
1294–1301. (b) Nishinaga, T.; Nodera, N.; Miyata, Y.; Komatsu, K.
J. Org. Chem. 2002, 67, 6091–6096. (c) Nishinaga, T.; Miyata, Y.;
Nodera, N.; Komatsu, K. Tetrahedron 2004, 60, 3375–3382. (d) Pak,
J. J.; Weakley, T. J. R.; Haley, M. M. J. Am. Chem. Soc. 1999, 121,
8182–8192. (e) Sarkar, A.; Pak, J. J.; Rayfield, G. W.; Haley, M. M.
J. Mater. Chem. 2001, 11, 2943–2945. (f) Tahara, K.; Johnson, C. A.;
Fujita, T.; Sonoda, M.; De Schryver, F. C.; De Feyter, S.; Haley,
M. M.; Tobe, Y. Langmuir 2007, 23, 10190–10197. (g) Zhou, X.;
Ren, A.-M.; Feng, J.-K.; Liu, X.-J. Can. J. Chem. 2004, 82, 1172–
1178.
(17) Seo, S. H.; Jones, T. V.; Seyler, H.; Peters, J. O.; Kim, T. H.; Chang,
J. Y.; Tew, G. N. J. Am. Chem. Soc. 2006, 128, 9264–9265.
(18) Seo, S. H.; Chang, J. Y.; Tew, G. N. Angew. Chem., Int. Ed. 2006,
45, 7526–7530.
(19) (a) Furukawa, S.; Uji-i, H.; Tahara, K.; Ichikawa, T.; Sonoda, M.; De
Schryver, F. C.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2006,
128, 3502–3503. (b) Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.;
Ichikawa, T.; Zhang, J.; Sonoda, M.; De Schryver, F. C.; De Feyter,
S.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613–16625. (c) Lei, S.;
Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.; De
Feyter, S. Angew. Chem., Int. Ed. 2008, 47, 2964–2968. (d) Furukawa,
S.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.;
De Feyter, S. Angew. Chem., Int. Ed. 2007, 46, 2831–2834. (e) Lei,
S.; Tahara, K.; Feng, X.; Furukawa, S.; De Schryver, F. C.; Mu¨llen,
K.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2008, 130, 7119–7129.
(f) Tahara, K.; Lei, S.; Mo¨ssinger, D.; Kozuma, H.; Inukai, K.; Van
der Auweraer, M.; De Schryver, F. C.; Ho¨ger, S.; Tobe, Y.; De Feyter,
S. Chem. Commun. 2008, 3897–3899.
(15) For similar electronic modulation in dehydrobenzo[14]annulene
π-systems, see: (a) Marsden, J. A.; Miller, J. J.; Haley, M. M. Angew.
Chem., Int. Ed. 2004, 43, 1694–1697. (b) Marsden, J. A.; Miller, J. J.;
Shirtcliff, L. D.; Haley, M. M. J. Am. Chem. Soc. 2005, 127, 2464–
2476. (c) Spitler, E. L.; Monson, J. M.; Haley, M. M. J. Org. Chem.
2008, 73, 2211–2223.
(20) (a) Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc. 1991, 113, 712–
713. (b) Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115,
905–916. (c) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto,
C. T.; Chin, D.; Mammen, M.; Gordon, D. M. Acc. Chem. Res. 1995,
28, 37–44. (d) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science
1991, 254, 1312–1319.
9
14340 J. AM. CHEM. SOC. VOL. 130, NO. 43, 2008