ester coupling provides an efficient reaction using only 1.1
equiv of the stannane coupling partner, and significantly,
π-deficient heteroaromatic peptidyl ketones can be prepared
(which are important in drug design1b).
CuDPP was dictated by earlier published studies comparing
copper(I) thiophene-2-carboxylate (CuTC) with CuDPP in
the desulfitative coupling of thiol esters with organostan-
nanes.9 A brief study revealed that optimum yields of L-Z-
Phe-2-thienyl were obtained using 2.5 mol % of Pd2(dba)3
with 20 mol % of freshly distilled P(OEt)3 as the supporting
ligand. The probe reactions proceeded well using THF or
THF/hexanes mixtures as the reaction solvent. THF/hexanes
mixtures were previously demonstrated to prevent undesired
Cu-catalyzed side reactions like protodestannylation and
oxidative homocoupling by minimizing the effective con-
centration of copper(I) carboxylate in solution.9
This new reaction was initially probed by exposure of the
prototypical substrates L-Z-Phe-S-p-tolyl and 2-thienyl-tri-
n-butylstannane to 2.2 equiv of the Cu(I) cofactor, copper(I)
diphenylphosphinate (CuDPP),9 in the presence of various
palladium catalysts and supporting ligands. The choice of
(1) (a) Timmons, A.; Seierstad, M.; Apodaca, R.; Epperson, M.; Pippel,
D.; Brown, S.; Chang, L.; Scott, B.; Webb, M.; Chaplan, S. R.; Breiten-
bucher, J. G. Bioorg. Med. Chem. Lett. 2008, 18, 2109–2113. (b) Maryanoff,
B. E.; Costanzo, M. J. Bioorg. Med. Chem. 2008, 16, 1562–1596. (c)
Costanzo, M. J.; Almond, H. R., Jr.; Hecker, L. R.; Schott, M. R.; Yabut,
S. C.; Zhang, H.-C.; Andrade-Gordon, P.; Corcoran, T. W.; Giardino, E. C.;
Kauffman, J. A.; Lewis, J. M.; de Garavilla, L.; Haertlein, B. J.; Maryanoff,
B. E. J. Med. Chem. 2005, 48, 1984–2008. (d) Douangamath, A.; Dale,
G. E.; D’Arcy, A.; Almstetter, M.; Eckl, R.; Frutos-Hoener, A.; Henkel,
B.; Illgen, K.; Nerdinger, S.; Schulz, H.; MacSweeney, A.; Thormann, M.;
Treml, A.; Pierau, S.; Wadman, S.; Oefner, C. J. Med. Chem. 2004, 47,
1325–1328. (e) Costanzo, M. J.; Yabut, S. C.; Almond, H. R., Jr.; Andrade-
Gordon, P.; Corcoran, T. W.; de Garavilla, L.; Kauffman, J. A.; Abraham,
W. M.; Recacha, R.; Chattopadhyay, D.; Maryanoff, B. E. J. Med. Chem.
2003, 46, 3865–3876. (f) Boger, D. L.; Miyauchi, H.; Hedrick, M. P. Bioorg.
Med. Chem. Lett. 2001, 11, 1517–1520. (g) Bachand, B.; Tarazi, M.; St-
Denis, Y.; Edmunds, J. J.; Winocour, P. D.; Leblond, L.; Siddiqui, M. A.
Bioorg. Med. Chem. Lett. 2001, 11, 287–290. (h) Tripathy, R.; Ator, M. A.;
Mallamo, J. P. Bioorg. Med. Chem. Lett. 2000, 10, 2315–2319. (i) Marquis,
R. W.; Ru, Y.; Yamashita, D. S.; Oh, H.-J.; Yen, J.; Thompson, S. K.;
Carr, T. J.; Levy, M. A.; Tomaszek, T. A.; Ijames, C. F.; Smith, W. W.;
Zhao, B.; Janson, C. A.; Abdel-Meguid, S. S.; D’Alessio, K. J.; McQueney,
M. S.; Veber, D. F. Bioorg. Med. Chem. 1999, 7, 581–588. (j) Calabretta,
R.; Giordano, C.; Gallina, C.; Morea, V.; Consalvi, V.; Scandurra, R. Eur.
J. Med. Chem. 1995, 30, 931–941. (k) Dragovich, P. S.; Zhou, R.; Webber,
S. E.; Prins, T. J.; Kwok, A. K.; Okano, K.; Fuhrman, S. A.; Zalman, L. S.;
Maldonado, F. C.; Brown, E. L.; Meador, J. W. I.; Patick, A. K.; Ford,
C. E.; Brothers, M. A.; Binford, S. L.; Matthews, D. A.; Ferre, R. A.;
Worland, S. T. Bioorg. Med. Chem. Lett. 2000, 10, 45–48. (l) Eda, M.;
Ashimori, A.; Akahoshi, F.; Yoshimura, T.; Inoue, Y.; Fukaya, C.;
Nakajima, M.; Fukuyama, H.; Imada, T.; Nakamura, N. Bioorg. Med. Chem.
Lett. 1998, 8, 919–924. (m) Wagner, B. M.; Smith, R. A.; Coles, P. J.;
Copp, L. J.; Ernest, M. J.; Krantz, A. J. Med. Chem. 1994, 37, 1833–1840.
(n) Mittag, T.; Christensen, K. L.; Lindsay, K. B.; Nielsen, N. C.; Skrydstrup,
T. J. Org. Chem. 2008, 73, 1088–1092.
The scope and limitations of the desulfitative coupling of
peptidic thiol esters and organostannanes were then explored.
Results are depicted in Table 1. Freshly distilled P(OEt)3 is
essential for an efficient coupling, in which case a near
stoichiometric quantity of CuDPP (1.2 equiv) is sufficient
for most reactions, although 2.2 equiv of CuDPP delivered
incrementally higher yields in some cases (entry 1: 98% vs
93%; entry 17: 80% vs 70%; entry 20: 92% vs 86%; entry
27: 84% vs 80%). Electron-rich heteroarylstannanes reacted
efficiently in 1:2 THF/hexanes at or slightly above room
temperature (entries 1-4, 15, 17-20, 22, 24-30). Vinyl
(entry 5), allyl (entry 6), and Z-1-propenyl (entry 14)
stannanes reacted to give acceptable to good yields of
corresponding peptidyl ketone products, the latter stannane
with complete retention of the double bond stereochemistry.
A variety of arylstannanes (entries 7-10, 13, 23) reacted
well in the cross-coupling, although a solvent switch to DMF
at 50 °C was required for acceptable reaction rates and
product yields in five of the six entries.
The results in Table 1 demonstrate that a diverse range of
amino acid thiol esters can couple efficiently with orga-
nostannanes. Those reactants derived from nonpolar N-
protected amino acids included Phe, Leu, Pro, Trp, and Met
(entries 1-21). Polar N-protected amino acids studied
included Ser, Tyr, Gln, His, Glu, Lys, and Arg (entries
22-29). Unprotected indole (entries 18 and 19), thioether
(entries 20 and 21), alcohol (entry 22), phenol (entry 24),
and amide (entry 25) functional groups were well-tolerated
using this pH-neutral reaction. In addition, protected imida-
zole, carboxylic acid, amine, and guanidine functional groups
did not interfere in the transformation (entries 26-29).
Although disulfides are known to be cleaved by CuI and
couple with boronic acids to produce thioethers,10 the bisthiol
ester derived from N-protected cystine reacted with 2-thienyl-
tri-n-butylstannane to cleanly give the bisketonic product
without cleaving the disulfide bond (entry 30). Given the
chemical sensitivity of the disulfide linkage, this example
shows the high chemoselectivity of the cross-coupling toward
the C-S bond of thiol esters.
(2) (a) O’Donnell, M. J.; Drew, M. D.; Pottorf, R. S.; Scott, W. L.
J. Comb. Chem 2000, 2, 172–181. (b) Munoz, B.; Giam, C.-Z.; Wong, C.-
H. Bioorg. Med. Chem. Lett. 1994, 2, 1085–1090. (c) Fukuyama, T.;
Tokuyama, H. Aldrichimica Acta 2004, 37, 87–96. (d) Reetz, M. T. Angew.
Chem., Int. Ed. Engl. 1991, 30, 1531–1546. (e) Ooi, T.; Takeuchi, M.; Kato,
D.; Uematsu, Y.; Tayama, E.; Sakai, D.; Maruoka, K J. Am. Chem. Soc.
2005, 127, 5073–5083. (f) Myers, A. G.; Yoon, T. Tetrahedron Lett. 1995,
36, 9429–9432. (g) Florjancic, A. S.; Sheppard, G. S Synthesis 2003, 1653–
1656. (h) Klix, R. C.; Chamberlin, S. A.; Bhatia, A. V.; Davis, D. A.; Hayes,
T. K.; Rojas, F. G.; Koops, R. W. Tetrahedron Lett. 1995, 36, 1791–1794.
(i) Paleo, M. R.; Sardina, F. J. Tetrahedron Lett. 1996, 37, 3403–3406. (j)
Vazquez, J.; Albericio, F. Tetrahedron Lett. 2002, 43, 7499–7502. (k)
Katritzky, A. R.; Le, K. N. B.; Khelashvili, L.; Mohapatra, P. P. J. Org.
Chem. 2006, 71, 9861–9864. (l) Conrad, K.; Hsiao, Y.; Miller, R.
Tetrahedron Lett. 2005, 46, 8587–8589. (m) Liu, J.; Ikemoto, N.; Petrillo,
D.; Armstrong, J. D. Tetrahedron Lett. 2002, 43, 8223–8226. (n) Bonini,
B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A.; Varchi,
G. Synlett 1998, 1013–1015. (o) Sharma, A. K.; Hergenrother, P. J. Org.
Lett. 2003, 5, 2107–2109. (p) Zhang, Y.; Rovis, T. J. Am. Chem. Soc. 2004,
126, 15964–15965.
(3) (a) Kakino, R.; Yasumi, S.; Shimizu, I.; Yamamoto, A. Bull. Chem.
Soc. Jpn. 2002, 75, 137–148. (b) Gooꢀen, L. J.; Ghosh, K. Angew. Chem.,
Int. Ed. Engl. 2001, 40, 3458–3460. (c) Gooꢀen, L. J.; Ghosh, K. Chem.
Commun. 2001, 2084–2085. (d) Lim, K.-C.; Hong, Y.-T.; Kim, S. Synlett
2006, 12, 1851–1854.
(4) (a) Tatamidani, H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6,
3597–3599. (b) Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N, J.
Org. Chem. 2004, 69, 5615–5621.
(7) Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993–2995.
(8) (a) Bennacer, B.; Rivalle, C.; Grierson, D. S. Eur. J. Org. Chem.
2003, 456, 9–4574. (b) Crisp, G. T.; Bubner, T. P Synth. Commun. 1990,
20, 1665–1670.
(5) (a) Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271–273. (b)
Haddach, M.; McCarthy, J. R. Tetrahedron Lett. 1999, 40, 3109–3112. (c)
Bumagin, N. A.; Korolev, D. N. Tetrahedron Lett. 1999, 40, 3057–3060.
(6) Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.; Liebeskind,
L. S. J. Am. Chem. Soc. 2007, 129, 1132–1140.
(9) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. 2003,
5, 3033–3035.
(10) (a) Taniguchi, N. J. Org. Chem. 2007, 72, 1241–1245. (b)
Taniguchi, N. Synlett 2006, 9, 1351–1354.
4376
Org. Lett., Vol. 10, No. 19, 2008