SCHEME 1. Synthesis of 5-Methoxy-4-azaindole by
Makosza and Co-workers
Synthesis of C3-Substituted 4-Azaindoles: An
Easy Access to 4-Azamelatonin and Protected
4-Azatryptophan
Matthieu Jeanty, Franck Suzenet,* and Ge´rald Guillaumet
Institut de Chimie Organique et Analytique (ICOA),
UMR-CNRS 6005, UniVersite´ d’Orle´ans BP 6759, rue de
Chartres, 45067 Orle´ans cedex 2, France
Friedel-Crafts acylations,6 condensations with piperidones,7 and
additions to aryl disulfides8 have been disclosed in the literature.
With the exception of halogenations and acylations, no reliable
and general procedure for derivatizing the C3 position of
azaindoles has emerged, and conditions are generally optimized
for individual substrates.
franck.suzenet@uniV-orleans.fr
ReceiVed May 29, 2008
In this paper focusing on the 4-azaindole isomer, we wish to
present a versatile approach to unprecedented C-3 substituted
4-azaindoles, with an increased scope and a high synthetic
efficiency. To this end, we have been interested in the synthesis
of 4-azaindole described by Makosza and co-workers.9 Cya-
nomethylation of 5-methoxy-3-nitropyridine via a vicarious
nucleophilic substitution of hydrogen gave pyridylacetonitrile
1a, whose subsequent heterocyclisation under hydrogenation
conditions provided the expected 4-azaindole 2 (Scheme 1).
First, we envisaged to take advantage of the acidity of the
methylene group in 1a to introduce various substituents prior
to the heterocyclisation under palladium-catalyzed hydrogena-
tion conditions. This methodology, barely applied in indole
chemistry,10 could be of particular interest for a rapid access to
C3-substituted 4-azaindoles with a wide range of functionalities.
Previous attempts by Macor et al.11 to prepare azaindoles by
this method resulted in the sole isolation of 3-methyl-4-azaindole
in only 16% yield. Although they successfully carried out
Mitsonobu reactions with 1a, the subsequent cyclization step
failed.
Since alkyl chains could not be directly introduced at the C3
position of the 4-azaindole by Friedel-Craft alkylation, we first
investigated the alkylation of pyridylacetonitriles 1a and 1b
followed by their heterocyclisation under hydrogenation condi-
tions. Results are reported in Table 1.
Deprotonation of 1a and 1b with a weak base such as
potassium carbonate and subsequent alkylation with benzyl and
primary alkyl halides afforded products 3a-3f in moderate to
C3-Substituted-4-azaindoles were synthesized from pyridy-
lacetonitriles in a two-step sequence allowing the easy
introduction of a range of substituents. This strategy permits
the rapid synthesis of 4-azamelatonin and a protected
4-azatryptophan.
In contrast to the plethora of natural products containing an
indole moiety, only few incorporate an azaindole ring. This
bioisoster of indole possessing remarkable physicochemical and
pharmacological properties now attracts increasing interest from
the chemistry community.1
The fusion of an electron-deficient pyridine ring with a pyrrole
ring, forming an azaindole, alters the electronic properties of
the π-system, rendering such heteroaromatic rings less reactive
than indoles toward electrophilic reagents. As a consequence,
direct functionalization at the C3 position with electrophiles is
not as straightforward as for indoles. To date, few examples of
nitrations,2 halogenations,3 formylations,4 Mannich reactions,5
(1) (a) Song, J. J.; Reeves, J. T.; Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake,
C. H. Chem. Soc. ReV. 2007, 36, 1120. (b) Me´rour, J.-Y.; Joseph, B. Curr. Org.
Chem 2001, 5, 471, and references therein. (c) Popowycz, F.; Routier, S.; Joseph,
B.; Me´rour, J.-Y. Tetrahedron 2007, 63, 1031. (d) Popowycz, F.; Me´rour, J.-
Y.; Joseph, B. Tetrahedron 2007, 63, 8689. (e) Prokopov, A. A.; Yakhontov,
L. N. Khim. Farm. Zh. 1994, 28, 30 CAN 122: 31364. (f) Hyaric, M.; Viera de
Almeida, M.; Nora de Souza, M. V. Quim. NoVa 2002, 25, 1165. (g) For
physicochemical properties see: Wu, P.-W.; Hsieh, W.-T.; Cheng, Y.-M.; Wei,
C.-Y.; Chou, P.-T. J. Am. Chem. Soc. 2006, 128, 14426. (h) Cash, M. T.;
Schreiner, P. R.; Phillips, R. S. Org. Biomol. Chem. 2005, 3, 3701.
(2) Bychikhina, N. N.; Azimov, V. A.; Yakhontov, L. N. Khim. Geterotsikl.
Soedin. 1982, 3, 356; Chem. Abstr. 1982, 97, 6190.
(3) (a) Papageorgiou, C.; Camenisch, G.; Borer, X. Bioorg. Med. Chem. Lett.
2001, 11, 1549. (b) Gallou, F.; Reeves, J. T.; Tan, Z.; Song, J. J.; Yee, N. K.;
Harcken, C.; Liu, P.; Thomson, D.; Senanayake, C. H. Synlett 2007, 2, 211.
(4) (a) Van de Poe¨l, H.; Guillaumet, G.; Viaud-Massuard, M.-C. Tetrahedron
Lett. 2002, 43, 1205. (b) Larraya, C.; Guillard, J.; Renard, P.; Audinot, V.; Boutin,
J. A.; Delagrange, P.; Bennejean, C.; Viaud-Massuard, M.-C. Eur. J. Med. Chem.
2004, 39, 515.
(7) (a) Macor, J. E.; Newman, M. E. Heterocycles 1990, 31, 805. (b) Filla,
S. A.; Mathes, B. M.; Jonhson, K. W.; Phebus, L. A.; Cohen, M. L.; Nelson,
D. L.; Zgombick, J. M.; Erickson, J. A.; Schenck, K. W.; Wainscott, D. B.;
Branchek, T. A.; Schaus, J. M. J. Med. Chem. 2003, 46, 3060.
(8) Ahmed, M.; Briggs, M. A.; Bromidge, S. M.; Buck, T.; Campbell, L.;
Deeks, N. J.; Garner, A.; Gordon, L.; Hamprecht, D. W.; Holland, V.; Johnson,
C. N.; Medhurst, A. D.; Mitchell, D. J.; Moss, S. F.; Powles, J.; Seal, J. T.;
Stean, T. O.; Stemp, G.; Thompson, M.; Trail, B.; Upton, N.; Winborn, K.;
Witty, D. R. Bioorg. Med. Chem. Lett. 2005, 15, 4867.
(9) Makosza, M.; Danikiewicz, W.; Wojciechowski, K. Liebigs Ann. Chem.
1988, 203.
(10) (a) Walker, G. N. J. Am. Chem. Soc. 1955, 77, 3844. (b) Snyder, H. R.;
Merica, E. P.; Force, C. G.; White, E. G. J. Am. Chem. Soc. 1958, 80, 4622. (c)
Walker, G. N. J. Med. Chem. 1965, 8, 583. (d) Marino, J. P.; Hurt, C. R. Synth.
Commun. 1994, 24, 839. (e) Humphrey, G. R.; Kuethe, J. T. Chem. ReV. 2006,
106, 2875. (f) Belley, M.; Sauer, E.; Beaudoin, D.; Duspara, P.; Trimble, L. A.;
Dube´, P. Tetrahedron Lett. 2006, 47, 159. (g) Belley, M.; Beaudoin, D.; Duspara,
P.; Sauer, E.; St-Pierre, G.; Trimble, L. A. Synlett 2007, 19, 2991. (h) Belley,
M.; Beaudoin, D.; St-Pierre, G. Synlett 2007, 19, 2999.
(5) Yakhontov, L. N.; Azimov, V. A. Khim. Geterotsikl. Soedin. 1970, 6,
32; Chem. Abstr. 1970, 72, 121396.
(6) Zhang, Z.; Yang, Z.; Wong, H.; Zhu, J.; Meanwell, N. A.; Kadow, J. F.;
Wang, T. J. Org. Chem. 2002, 67, 6226.
(11) (a) Macor, J. E.; Wehner, J. M. Tetrahedron Lett. 1991, 32, 7195. (b)
Macor, J. E.; Wehner, J. M. Heterocycles 1993, 35, 349.
7390 J. Org. Chem. 2008, 73, 7390–7393
10.1021/jo8011623 CCC: $40.75 2008 American Chemical Society
Published on Web 08/26/2008