COMMUNICATIONS
[2] a) L. Ackermann, R. Vicente, H. K. Potukuchi, V. Piro-
vano, Org. Lett. 2010, 12, 5032–5035; b) I. ꢂzdemir, S.
Demir, B. C¸ etinkaya, C. Gourlaouen, F. Maseras, C.
Bruneau, P. H. Dixneuf, J. Am. Chem. Soc. 2008, 130,
1156–1157; c) L. Ackermann, Org. Lett. 2005, 7, 3123–
3125; d) L. Ackermann, A. V. Lygin, Org. Lett. 2011,
13, 3332–3335; e) C. Sollert, K. Devaraj, A. Orthaber,
P. J. Gates, L. T. Pilarski, Chem. Eur. J. 2015, 21, 5380–
5386; f) S. Warratz, C. Kornhaaß, A. Cajaraville, B.
Niepçtter, D. Stalke, L. Ackermann, Angew. Chem.
2015, 127, 5604–5608; Angew. Chem. Int. Ed. 2015, 54,
5513–5517; g) L. Ackermann, P. Novꢃk, R. Vicente, N.
Hofmann, Angew. Chem. 2009, 121, 6161–6164; Angew.
Chem. Int. Ed. 2009, 48, 6045–6048; h) F. Yang, L. Ac-
kermann, J. Org. Chem. 2014, 79, 12070–12082; i) L.
Ackermann, P. Novꢃk, Org. Lett. 2009, 11, 4966–4969;
j) L. Ackermann, N. Hofmann, R. Vicente, Org. Lett.
2011, 13, 1875–1877.
Ru(IV) complex 9. Finally, reductive elimination of 9
occurred to afford the coupling product 3. However,
the mechanism of isoquinolone formation triggered
by water may undergo a different operative mecha-
nism and still remains elusive at this stage, which is
the subject of our continuing study.
In summary, we have unraveled the Ru-promoted
2
3
À
prototype reaction based on C(sp ) C(sp ) bond for-
À
mation through the C H activation of isoquinoline
and pyridine derivatives with alkyl halides, leading to
the 1-substituted isoquinoline products. Simultaneous-
ly, we are able to chemically tune the reaction mode
by adding water towards dearomatization, leading to
isoquinolones. Ongoing work seeks to gain a detailed
mechanistic understanding of the dual reaction modes
of isoquinoline mediated by ruthenium.
À
[3] Recent C H functionalization work related to Ru cata-
lysts: a) V. P. Mehta, J.- A. Garcꢄa-Lꢅpez, M. F. Grea-
ney, Angew. Chem. 2014, 126, 1555–1559; Angew.
Chem. Int. Ed. 2014, 53, 1529–1533; b) C. Suzuki, K.
Morimoto, K. Hirano, T. Satoh, M. Miura, Adv. Synth.
Catal. 2014, 356, 1521–1526; c) H. Li, X. Xie, L. Wang,
Chem. Commun. 2014, 50, 4218–4221; d) K. Padala, M.
Jeganmohan, Chem. Commun. 2014, 50, 14573–14576;
e) P. M. Liu, C. G. Frost, Org. Lett. 2013, 15, 5862–
5865; f) L. Ackermann, Acc. Chem. Res. 2014, 47, 281–
295; g) M. Schinkel, L. Wang, K. Bielefeld, L. Acker-
mann, Org. Lett. 2014, 16, 1876–1879; h) M. R. Yadav,
M. Shankar, E. Ramesh, K. Ghosh, A. K. Sahoo, Org.
Lett. 2015, 17, 1886–1889; i) H. Cheng, W. Dong, C. A.
Dannenberg, S. Dong, Q. Guo, C. Bolm, ACS Catal.
2015, 5, 2770–2773; j) K. Kim, H. Choe, Y. Jeong, J. H.
Lee, S. Hong, Org. Lett. 2015, 17, 2550–2553; k) J. Li, S.
Warratz, D. Zell, S. De Sarkar, E. E. Ishikawa, L.
Ackermann, J. Am. Chem. Soc. 2015, 137, 13894–13901;
l) R. Prakash, K. Shekarrao, S. Gogoi, Org. Lett. 2015,
17, 5264–5267; m) R. Manikandan, P. Madasamy, M. Je-
ganmohan, ACS Catal. 2016, 6, 230–234; n) D. J. Pay-
mode, C. V. Ramana, J. Org. Chem. 2015, 80, 11551–
11558; o) M. K. Singh, H. K. Akula, S. Satishkumar, L.
Stahl, M. K. Lakshman, ACS Catal. 2016, 6, 1921–1928;
p) G. S. Kumar, M. Kapur, Org. Lett. 2016, 18, 1112–
1115; q) J. A. Fernꢃndez-Salas, S. Manzini, L. Piola,
A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2014, 50,
6782–6784.
Experimental Section
Typical Procedure for the Synthesis of 3aa
Benzyl chloride 1a (190 mg, 1.5 mmol) and isoquinoline 2a
(65 mg, 0.5 mmol) were added to a mixture of [RuCl2(p-
cymene)]2 (7 mg, 0.00125 mmol), IPr (20 mg, 0.05 mmol), 1-
AdCOOH (27 mg, 0.15 mmol) and K2CO3 (138 mg, 1 mmol)
in NMP (1.5 mL) under N2. After heating at 1508C for 12 h,
the resulting mixture was filtered through Celite, the residue
washed with ethyl acetate. After concentration, the crude
product was purified by flash chromatography (ethyl ace-
tate/n-hexane 1:8).
Typical Procedure for the Synthesis of 4aa
Benzyl chloride 1a (253 mg, 2 mmol) and isoquinoline 2a
(65 mg, 0.5 mmol) were added to a mixture of [RuCl2(p-
cymene)]2 (7 mg, 0.00125 mmol) and K2CO3 (276 mg,
2 mmol) in H2O (1 mL). The reaction mixture was heated at
1308C for 12 h. After extraction with ethyl acetate (3ꢁ
5 mL) and filtration over Celite, the collected organic layers
were dried over MgSO4. After concentration, the crude
product was purified by flash chromatography (ethyl ace-
tate/n-hexane 1:8).
Acknowledgements
[4] a) K. Bhadra, G. S. Kumar, Med. Res. Rev. 2011, 31,
821–862; b) K. W. Bentley, Nat. Prod. Rep. 2006, 23,
444–463; c) K. C. Nicolaou, C. R. H. Hale, C. Nilewski,
H. A. Ioannidou, Chem. Soc. Rev. 2012, 41, 5185–5238;
d) A. Graulich, S. Dilly, A. Farce, J. Scuve-Moreau, O.
Waroux, C. Lamy, P. Chavatte, V. Seutin, J. F. Ligeois,
J. Med. Chem. 2007, 50, 5070–5075; e) M. Shamma,
J. L. Moniot, The Isoquinoline Alkaloids, Chemistry
and Pharmacology, Academic Press, New York,
London, 1972; f) Q. Wang, G. Han, Y. Liu, Q. Wang,
Nat. Prod. Rep. 2010, 27, 1168–1185; g) M. Torres, S.
Gil, M. Parra, Curr. Org. Chem. 2005, 9, 1757–1779;
h) C. Ito, M. Itoigawa, T. Otsuka, H. Tokuda, H. Nishi-
no, H. Furukawa, J. Nat. Prod. 2000, 63, 1344–1348;
i) M. Daudon, H. Mehri, M. M. Plat, E. W. Hagaman,
This work is financially supported by the Ministry of Science
& Technology of Taiwan (MOST-104–2628M-001-005-MY4
grant) and Academia Sinica Career Development Award
(104-CDA-M08). Finally, this lab is grateful to Dr. Mei-Chun
Tseng for mass spectrometry.
References
[1] a) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem.
Rev. 2012, 112, 5879–5918; b) L. Ackermann, Chem.
Rev. 2011, 111, 1315–1345; c) L. Ackermann, Org. Pro-
cess Res. Dev. 2015, 19, 260–269.
Adv. Synth. Catal. 0000, 000, 0 – 0
7
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!