C O M M U N I C A T I O N S
Silver acetate was applied as a base, with the product being observed
in 50% yield (entry 7). This yield could be increased to 65% through
the inclusion of K2CO3 (entry 8), suggesting that the carbonate may
play a role in regulating the pH of the reaction mixture and ensuring
the presence of -OAc and not necessarily be involved in the
deprotonation. Lastly, a KIE of 5.4 was observed, indicating that
the C-H breaking event is rate-limiting.
further insights into the reaction’s mechanism, and results will be
disclosed in due course.
Acknowledgment. This work was supported by the Natural
Science and Engineering Research Council of Canada (NSERC),
the Canada Research Chairs Program, the Canada Foundation for
Innovation, and the Universite´ de Montre´al. Vincent N. G. Lindsay
is also thanked for comments on the manuscript.
Table 2. Determination of the Role of the Reagentsa
Note Added after ASAP Publication. Structure 4e was corrected
in Table 1 on September 29, 2010.
entry
Pd source
Ag
additive
yieldb
c
e
e
e
e
e
e
1
2
3
4
5
6
7
8
Pd(OAc)2
Ag2CO3
Ag2CO3
Ag2CO3
Ag2CO3
Ag2CO3
Ag2CO3
none
none
PCy3 (7.5 mol %)
KOAc (10 mol %)
none
KOAc (10 mol %)
none
K2CO3 (0.51 equiv)
90
<5
<5
76
51
73
50
65
d
Supporting Information Available: Experimental procedures,
sample spectra, and compound characterization data for each reaction.
This material is available free of charge via the Internet at http://
pubs.acs.org.
Pd2dba3
Pd2dba3
d
d
Pd2dba3
c
c
c
c
Pd(TFA)2
Pd(TFA)2
Pd(OAc)2
Pd(OAc)2
AgOAcf
AgOAcf
References
(1) (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
ReV. 2002, 102, 1359. (b) Laird, T. Org. Process Res. DeV. 2006, 10, 851.
(c) Evans, D. A.; Dinsmore, C. J.; Watson, P. S.; Wood, M. R.; Richardson,
T. I.; Trotter, B. W.; Katz, J. L. Angew. Chem., Int. Ed. 1998, 37, 2704.
(d) Lehn, J.-M. Science 2002, 295, 2400.
(2) (a) Tsuji, J. Palladium Reagents and Catalysts: New PerspectiVes for the
21st Century; Wiley: London, 2004. (b) Miyaura, N.; Suzuki, A. Chem.
ReV. 1995, 95, 2457.
a Reaction conditions: 1a (1 equiv), benzene (100 equiv), 125 °C,
20 h. b Yield (%) determined by 1H NMR analysis using an internal
standard. c 5 mol % of catalyst. d 2.5 mol % of catalyst. e 0.51 equiv. f 1
equiv.
(3) For selected reviews, see: (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem.
ReV. 2007, 107, 174. (b) Miura, M.; Satoh, T. Top. Organomet. Chem.
2005, 14, 55. (c) Campeau, L. C.; Fagnou, K. Chem. Commun. 2006, 1253.
(d) Seregin, I. Y.; Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (e)
Lyons, T. W.; Sanford, M. S. Chem. ReV. 2010, 110, 1147. (f) Chen, X.;
Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48,
5094. (g) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009,
42, 1074.
(4) Recent examples from our group: (a) Valle´e, F.; Mousseau, J. J.; Charette,
A. B. J. Am. Chem. Soc. 2010, 132, 1514. (b) Mousseau, J. J.; Bull, J. A.;
Charette, A. B. Angew. Chem., Int. Ed. 2010, 49, 1115. (c) Larive´e, A.;
Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52.
(5) For selected recent examples, see: (a) Ackermann, L.; Born, R.; Alvarez-
Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364. (b) Kim, M.; Kwak,
J.; Chang, S. Angew. Chem., Int. Ed. 2009, 48, 8935. (c) Yang, S.; Li, B.;
Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066. (d) Zhao, X.; Yeung,
C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. (e) Hull, K. L.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 9651. (f) Deprez, N. R.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234. (g) Xiao, B.; Fu, Y.;
Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132,
468. (h) Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. J. Am.
Chem. Soc. 2010, 132, 4978.
Based on these results, we believe that the reaction proceeds as
follows. First, the palladium inserts into the benzene ring (Scheme
2). This reversible process was first reported in 1965 by Van Helden
and later again by Sasson.14 However, given the importance of
acetate not only in their disclosures but also in our results, in
addition to known work in the area, we propose that this happens
through a concerted metalation deprotonation sequence over the
previously suggested Wheland intermediate.7c,15 The resulting
phenylated Pd then undergoes Ag-assisted oxidative addition to
obtain the corresponding PdIV species that is directed and stabilized
by the presence of a Lewis basic group.16 This intermediate
reductively eliminates to give the observed product. Simultaneously,
the AcOH generated in the carbopalladation step is deprotonated
by the carbonate and ligates to the Pd, regenerating the active
catalyst. This pathway also accounts for the trace amount of
biphenyl observed in the reaction mixture, as a result of homo-
coupling of two benzene molecules.10 Indeed, the phenylated Pd
is known to disproportionate to provide Pd(OAc)2 and PdPh2, the
latter of which reductively eliminates to give biphenyl and Pd0.10
(6) (a) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 16496. (b)
Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (c) Qin, C.; Lu, W. J.
Org. Chem. 2008, 73, 7424. (d) Kobayashi, O.; Urajuchi, D.; Yamakawa,
T. Org. Lett. 2009, 11, 2679. (e) Liu, W.; Cao, H.; Lei, A. Angew. Chem.,
Int. Ed. 2010, 49, 2004.
(7) (a) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.; Jiang,
Z.-X. J. Am. Chem. Soc. 2010, 132, 4506. (b) Rene´, O.; Fagnou, K. Org.
Lett. 2010, 12, 2116. (c) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou,
K. J. Am. Chem. Soc. 2006, 128, 8754. (d) Do, H.-Q.; Khan, R. M. K.;
Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (e) Do, H. Q.; Daugulis,
O. J. Am. Chem. Soc. 2008, 130, 1128. (f) He, C.-Y.; Fan, S.; Zhang, X.
J. Am. Chem. Soc. 2010, 132, 12850.
Scheme 2. Proposed Catalytic Cycle
(8) Snieckus, V. Chem. ReV. 1990, 90, 879.
(9) Though full conversions were reported with 0.50 equiv of Ag2CO3, more
reproducible results were obtained with slightly more reagent.
(10) Bipenyl is always generated in the reaction in a non-reproducible manner.
In the case where additional biphenyl would be formed due to decarboxyl-
ation, differentiating it from naturally forming byproducts would not be
possible.
(11) In all cases the halide was consummed. The balance of material provided
a complex mixture.
(12) Entries resulting in lower yields are the result of incomplete consumption
of the bromide starting material. Efforts to drive the consumption to
completion were unsuccessful.
(13) Schlosser, M.; Marzi, E. Chem.sEur. J. 2005, 11, 3449.
(14) (a) van Helden, R.; Verberg, G. Recl. TraV. Chim. Pays-Bas 1965, 84,
1263. (b) Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Sasson, Y. J. Org.
Chem. 2000, 65, 3107.
(15) (a) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130,
10848. (b) Cardenas, D. J.; Martin-Matute, B.; Echavarren, A. M. J. Am.
Chem. Soc. 2006, 128, 5033. (c) Garcia-Cuadrado, D.; Braga, A. A. C.;
Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066.
(16) For cationic PdIV species, see: (a) Campora, J.; Palma, P.; del Rio, D.;
Carmona, E. Organometallics 2003, 22, 3345. (b) Campora, J.; Palma, P.;
del Rio, D.; Lopez, J. A.; Alvarez, E. Organometallics 2005, 24, 3624.
In conclusion, we have disclosed an efficient Pd-catalyzed direct
arylation process that can be performed in the absence of an external
ligand and that requires only substoichiometric amounts of Ag2CO3.
The reaction displays inverse reactivity to what has been previously
reported, where the reactant is also the solvent that can be recycled
for future transformations. Work is currently underway to gain
JA107541W
9
14414 J. AM. CHEM. SOC. VOL. 132, NO. 41, 2010