Tetranuclear Nickel Complexes
FULL PAPER
[10] S. Kitagawa, S. Noro, T. Nakamura, Chem. Commun. 2006,
701–707.
[11] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. 2004, 116,
2388–2430; Angew. Chem. Int. Ed. 2004, 43, 2334–2375.
[12] I. Boldog, E. B. Rusanov, A. N. Chernega, J. Sieler, K. V. Dom-
asevitch, Angew. Chem. 2001, 113, 3543–3546; Angew. Chem.
Int. Ed. 2001, 40, 3435–3438.
chromated Mo-Kα radiation (λ = 0.71073 Å) was used throughout.
The data were processed with the program STOE X-AREA.[44] Se-
lected details of the data collection and refinement are given in
Table 2. The structures were solved by direct methods[45] and re-
fined by full-matrix least-squares techniques on the basis of all data
against F2 using SHELXL-97.[46] PLATON was used to search for
higher symmetry.[47] All non-hydrogen atoms were refined aniso-
tropically. H atoms were placed at calculated positions and refined
as riding atoms with isotropic displacement parameters.
[13] K. V. Domasevitch, I. Boldog, Acta Crystallogr., Sect. C 2005,
61, 373–376.
[14] S. Y. Yu, H.-P. Huang, S.-H. Liu, Q. Jia, Y.-Z. Li, B. Wu, Y.
Sei, K. Yamaguchi, Y.-J. Pan, H.-W. Ma, Inorg. Chem. 2005,
44, 9471–9488.
[15] B. Kersting, G. Steinfeld, Chem. Commun. 2001, 1376–1377.
[16] a) G. Steinfeld, V. Lozan, B. Kersting, Angew. Chem. 2003, 115,
2363–2365; Angew. Chem. Int. Ed. 2003, 42, 2261–2263; b) S.
Käss, T. Gregor, B. Kersting, Angew. Chem. 2006, 118, 107–
110; Angew. Chem. Int. Ed. 2006, 45, 101–104.
[17] M. H. Klingele, G. Steinfeld, B. Kersting, Z. Naturforsch., Teil
B 2001, 56, 901–907.
[18] J. Hausmann, M. H. Klingele, V. Lozan, G. Steinfeld, D. Sieb-
ert, Y. Journaux, J. J. Girerd, B. Kersting, Chem. Eur. J. 2004,
10, 1716–1728.
[19] Y. Journaux, V. Lozan, J. Hausmann, B. Kersting, Chem. Com-
mun. 2006, 83–84.
[20] V. Lozan, B. Kersting, Eur. J. Inorg. Chem. 2007, 1436–1443.
[21] V. Lozan, B. Kersting, Inorg. Chem. 2006, 45, 5630–5634.
[22] B. Kersting, Angew. Chem. 2001, 113, 4110–4112; Angew.
Chem. Int. Ed. 2001, 40, 3988–3990.
[23] B. Kersting, G. Steinfeld, Inorg. Chem. 2002, 41, 1140–1150.
[24] Y. Journaux, T. Glaser, G. Steinfeld, V. Lozan, B. Kersting,
Dalton Trans. 2006, 1738–1748.
Some of the solvate molecules in 6 and 7 were found to be disor-
dered or only partially occupied. In the crystal structure of
6[BPh4]2·1.5MeCN the occupancy factor of one MeCN was re-
duced to 0.5. In the crystal structure of 7[BPh4]2·6MeCN·2H2O
the water molecule was found to be disordered over two sites. The
respective orientations were refined by using a split atom model to
give site occupancy factors of 0.59(1) [O(1a)] and 0.41(1) [for
O(1b)]. Water hydrogen atoms were not included in the refinement.
Graphics were produced with Ortep3 for Windows.[48]
CCDC-641207 (for 2), -641208 (for 3), -641209 (for 4), and -641210
(for 5) contain the supplementary crystallographic data for this pa-
per. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac/data_request/
cif.
Supporting Information (see also the footnote on the first page of
this article): Experimental and calculated magnetic values suscep-
tibility data for 9[BPh4]2.
[25] Magnetism: Molecules to Materials (Eds.: J. S. Miller, M. Dril-
lon), Wiley-VCH, Weinheim, 2001.
[26] E. Coronado, P. Delhaes, D. Gatteschi, J. S. Miller (Eds.), Mo-
lecular magnetism: From Molecular Assmblies to Devices,
NATO ASI Series, Kluwer, Dordrecht, The Netherlands, 1995,
vol. 321.
[27] S. P. Watton, P. Fuhrmann, L. E. Pence, A. Caneschi, A.
Cornia, G. L. Abbati, S. J. Lippard, Angew. Chem. 1997, 109,
2917–2919; Angew. Chem. Int. Ed. Engl. 1997, 36, 2774–2776.
[28] J. Larionova, M. Gross, M. Pilkington, H. Andres, H. Stoeckli-
Evans, H. U. Güdel, S. Decurtins, Angew. Chem. 2000, 112,
1667–1672; Angew. Chem. Int. Ed. 2000, 39, 1605–1609.
Acknowledgments
We sincerely thank the Deutsche Forschungsgemeinschaft (DFG)
(priority program 1137 “Molecular Magnetism”) for funding of
this work. We are grateful to Prof. Dr. F. Meyer for providing facili-
ties for magnetic susceptibility measurements.
[1] S. Trofimenko, J. Org. Chem. 1964, 29, 3046–3049.
[2] I. Boldog, J. Sieler, A. N. Chernega, K. V. Domasevitch, Inorg.
Chim. Acta 2002, 338, 69–77.
[3] P. E. Kruger, G. D. Fallon, B. Moubaraki, K. S. Murray, J.
Chem. Soc., Chem. Commun. 1992, 1926–1927.
[4] a) V. V. Ponomarova, V. V. Komarchuk, I. Boldog, A. N. Cher-
nega, J. Sieler, K. Domasevitch, Chem. Commun. 2002, 436–
437; b) I. Boldog, E. B. Rusanov, J. Sieler, S. Blaurock, K. V.
Domasevitch, Chem. Commun. 2003, 740–741; c) E. B. Rus-
anov, V. V. Ponomarova, V. V. Komarchuk, H. Stoeckli-Evans,
E. Fernandez-Ibanez, F. Stoeckli, J. Sieler, K. V. Domasevitch,
Angew. Chem. 2003, 115, 2603–2605; Angew. Chem. Int. Ed.
2003, 42, 2499–2501.
[5] J.-P. Zang, S. Horike, S. Kitagawa, Angew. Chem. 2007, 119,
907–910; Angew. Chem. Int. Ed. 2007, 46, 889–892.
[6] J. He, Y.-G. Yin, T. Wu, D. Li, X.-C. Huang, Chem. Commun.
2006, 2845–2847.
[7] a) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke,
M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319–330;
b) M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M.
O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123, 4368–
4369; c) J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M.
Yaghi, J. Am. Chem. Soc. 2004, 126, 5666–5667; d) T. J. Barton,
L. M. Bull, W. G. Klemperer, D. A. Loy, B. McEnaney, M.
Misono, P. A. Monson, G. Pez, G. W. Scherer, J. C. Vartuli,
O. M. Yaghi, Chem. Mater. 1999, 11, 2633–2656.
[8] C. N. R. Rao, S. Natarajan, A. Choudhury, S. Neeraj, A. A.
Ayi, Acc. Chem. Res. 2001, 34, 80–87.
[9] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629–
1658.
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
A. L. Dearden, S. Parsons, R. E. P. Winpenny, Angew. Chem.
2001, 113, 155–158; Angew. Chem. Int. Ed. 2001, 40, 151–154.
S. Demeshko, G. Leibeling, S. Dechert, F. Meyer, Dalton Trans.
2006, 3458–3465.
B. Kersting, G. Steinfeld, D. Siebert, Chem. Eur. J. 2001, 7,
4253–4258.
C. C. Barton, G. F. Daves, G. Franceschi, J. Chem. Soc., Perkin
Trans. 1980, 643–647.
T. Beissel, T. Glaser, F. Kesting, K. Wieghardt, B. Nuber, Inorg.
Chem. 1996, 35, 3936–3947.
K. K. Nanda, A. W. Addison, N. Paterson, E. Sinn, L. K.
Thompson, U. Sakaguchi, Inorg. Chem. 1998, 37, 1028–1036.
T. R. Felthouse, E. J. Laskowski, D. N. Hendrickson, Inorg.
Chem. 1977, 16, 1077–1089.
a) M. Julve, M. Verdaguer, A. Gleizes, M. Philoche-Levisalles,
O. Kahn, Inorg. Chem. 1984, 23, 3808–3818; b) S. Alvarez, M.
Julve, M. Verdaguer, Inorg. Chem. 1990, 29, 4500–4507.
M. Verdaguer, J. Gouteron, S. Jeannin, Y. Jeannin, O. Kahn,
Inorg. Chem. 1984, 23, 4291–4296.
[37]
[38]
a) E. G. Bakalbassis, C. A. Tsipis, J. Mrozinski, Inorg. Chem.
1985, 24, 4231–4233; b) E. G. Bakalbassis, J. Mrozinski, C. A.
Tsipis, Inorg. Chem. 1986, 25, 3684–3690; c) C. E. Xan-
thopoulos, M. P. Sigalas, G. A. Katsoulos, C. A. Tsipis, A.
Terzis, M. Mentzafos, A. Hountas, Inorg. Chem. 1993, 32,
5433–5436.
[39]
P. Chaudhuri, K. Oder, K. Wieghardt, S. Gehring, W. Haase,
B. Nuber, J. Weiss, J. Am. Chem. Soc. 1988, 110, 3657–3658.
Eur. J. Inorg. Chem. 2007, 3217–3226
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3225