J. D. Burch et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1041–1046
1045
OR1
OR1
OR1
O
O
H2N
a,b,c
O
+
N
Br
Br
X
X
O
OR1
d
O
12
11
4
OR1
OR1
OR1
O
O
e,f
N
N
O
X
X
OR1
O
14
13
g,h,i
OR1
OR1
O
j
N
N
NH2
N3
X
X
OR1
OR1
15
16
Scheme 2. Reagents and conditions: (a) reflux AcOH; (b) NaBH4, THF/MeOH; (c) Et3SiH, TFA/CH2Cl2; (d) 2-tri-n-butylstannylpropene, Pd(PPh3)4, tol.; (e) OsO4, NMO, acetone/
water; (f) NaIO4, acetone; (g) NaBH4, ethanol; (h) MsCl, triethylamine, CH2Cl2; (i) NaN3, DMF; (j) H2, Pd/C, ethanol.
352, 1071; (b) Nussmeier, N. A.; Whelton, A. A.; Brown, M. T.; Langford, R. M.;
Hoeft, A.; Parlow, J. L.; Boyce, S. W.; Verbug, K. M. N. Engl. J. Med. 2005, 352,
1081; (c) Bresalier, R. S.; Sandler, R. S.; Quan, H.; Bolognese, J. A.; Oxenius, B.;
Horgan, K.; Lines, C.; Ridell, R.; Morton, D.; Lanas, A.; Konstam, M. A.; Baron, J.
A. N. Engl. J. Med. 2005, 352, 1092.
was hydrolyzed to the acid which was reduced to alcohol 8 using
BH3–DMS. Conversion of the alcohol to the mesylate followed by
treating with NaCN gave benzylic nitrile 9. Nitrile 9 could be
reduced directly with BH3–DMS to amine 10 (R2 = R3 = H). Alterna-
tively,
9
could be converted to the cyclopropylamine (R2,
4. McCoy, J. M.; Wicks, J. R.; Audoly, L. P. J. Clin. Invest. 2002, 110, 651.
5. Lin, C.-R.; Amaya, F.; Barrett, L.; Wang, H.; Takada, J.; Samad, T. A.; Woolf, C. J. J.
Pharmacol. Exp. Ther. 2006, 319, 1096.
6. Clark, P.; Rowland, S. E.; Denis, D.; Mathieu, M.-C.; Stocco, R.; Poirier, H.; Burch,
J.; Han, Y.; Audoly, L.; Therien, A. G.; Xu, D. J. Pharmacol. Exp. Ther. 2008, 325,
425.
7. Murase, A.; Okumura, T.; Sakakibara, A.; Tonai-Kachi, H.; Nakao, K.; Takada, J.
Eur. J. Pharmacol. 2008, 580, 116.
8. Yao, C.; Sakata, D.; Esaki, Y.; Li, Y.; Matsuoka, Y.; Kuroiwa, K.; Sugimoto, Y.;
Narumiya, S. Nat. Med. 2009, 15, 633.
9. (a) McAdam, B. F.; Catella-Lawson, F.; Mardini, I. A.; Kapoor, S.; Lawson, J. A.;
FitzGerald, G. A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 272; (b) FitzGerald, G. A.;
Patrono, C. N. Engl. J. Med. 2001, 345, 433; For a recent review see: (c) Funk, C.
D.; FitzGerald, G. A. J. Cardiovasc. Pharmacol. 2007, 50, 470.
10. Maubach, K. A.; Davis, R. J.; Clark, D. E.; Fenton, G.; Lockey, P. M.; Clark, K. L.;
Oxford, A. W.; Hagan, R. M.; Routledge, C.; Coleman, R. A. Br. J. Pharmacol. 2009,
156, 316.
11. Cipollone, F.; Fazia, M. L.; Iezzi, A.; Cuccurollo, C.; De Cesare, D.; Ucchino, S.;
Spigonardo, F.; Marchetti, A.; Buttitta, F.; Paloscia, L.; Mascellanti, M.;
Cuccurollo, F.; Mezzetti, A. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1925.
12. (a) Dohadwala, M.; Batra, R. K.; Luo, J.; Lin, Y.; Krysan, K.; Põld, M.; Sharma, S.;
Dubinett, S. M. J. Biol. Chem. 2002, 277, 50828; (b) Ma, X.; Kundu, N.; Rifat, S.;
Walser, R.; Fulton, A. M. Cancer Res. 2006, 66, 2923; (c) Chell, S. D.; Witherden,
I. R.; Dobson, R. R.; Moorghen, M.; Herman, A. A.; Qualtrough, D.; Williams, A.
C.; Paraskeva, C. Cancer Res. 2006, 66, 3106; (d) Yang, L.; Huang, Y.; Porta, R.;
Yanagisawa, K.; Gonzalez, A.; Segi, E.; Johnson, D. J.; Narumiya, S.; Carbone, D.
P. Cancer Res. 2006, 66, 9665; (e) Fulton, A. M.; Ma, X.; Kundu, N. Cancer Res.
2006, 66, 9794; (f) Muller, M.; Sales, K. J.; Katz, A. A.; Jabbour, H. N.
Endocrinology 2006, 147, 3356; (g) Hawcrpft, G.; Ko, C. W. S.; Hull, M. A.
Oncogene 2007, 26, 3006; (h) Rao, R.; Redha, R.; Macias-Perez, I.; Su, Y.; Hao, C.;
Zent, R.; Breyer, M. D.; Pozzi, A. J. Biol. Chem. 2007, 282, 16959; (i) Kambe, A.;
Iguchi, G.; Moon, Y.; Kamitani, H.; Watanabe, T.; Eling, T. E. Biochim. Biophys.
Acta 2008, 1783, 1211; (j) Zheng, Y.; Ritzenthaler, J. D.; Sun, X.-J.; Roman, J.;
Han, S.-W. Cancer Res. 2009, 69, 896; (k) Kunda, N.; Ma, X.; Holt, D. Breast
Cancer Res. Treat. 2009, 117, 235; (l) Kim, J. I.; Lakshmikanthan, V.; Frilot, N.;
Daaka, Y. Mol. Cancer Res. 2010, 8, 569; (m) Terada, N.; Shimizu, Y.; Kamba, T.;
Inoue, T.; Maeno, A.; Kobayashi, T.; Nakamura, E.; Kamoto, T.; Kanaji, T.;
Maruyama, T.; Mikami, Y.; Toda, Y.; Matsuoka, T.; Okuno, Y.; Tsujimoto, G.;
Narumiya, S.; Ogawa, O. Cancer Res. 2010, 70, 1606; (n) Kopp, K. L. M.; Kauczok,
C. S.; Lauenborg, B.; Krejsgaard, T.; Eriksen, K. W.; Zhang, Q.; Wasik, M. A.;
Geisler, C.; Ralfkiaer, E.; Becker, J. C.; Ødum, N.; Woetmann, A. Leukemia 2010,
24, 1179; (o) Robertson, F. M.; Simeone, A.-M.; Lucci, A.; McMurray, J. S.;
Ghosh, S.; Cristofanilli, M. Cancer 2010, 116, 2806.
R3 = CH2CH2) according to the Szymoniak variation17 of the Kulin-
kovich reaction. Standard amide coupling of amine 10 and an
appropriate acid furnished the amide derivatives 1. Alternatively,
amine 10 was reacted with an appropriate ethyl (arylsulfonyl)car-
bamate (commercially available or easily prepared from arylsulf-
onamide and ethyl chloroformate in the presence of a suitable
base18) to give the corresponding sulfonylurea analogs 2.
Compounds bearing an
a-Me substitution (e.g., 1e) were pre-
pared according to Scheme 2. Condensation of anhydride 4 with
4-bromo-2-methylaniline (11) followed by a similar deoxygen-
ation sequence gave lactam 12. Stille coupling of the bromide with
2-tri-n-butylstannylpropene using Pd(PPh3)4 as the catalyst gave
alkene 13 which was converted to ketone 14 in two-steps: dihydr-
oxylation with OsO4 to give the diol; and oxidative diol cleavage
with NaIO4. Ketone 14 was then transformed to azide 15 in
three-steps: reduction with NaBH4, formation of mesylate and
SN2 reaction of the mesylate with sodium azide. Reduction of azide
15 under the standard hydrogenation conditions gave amine 16
which was converted to the amide or sulfonylurea analogs under
the aforementioned conditions.
In conclusion, we have described the identification and SAR
optimization of two new series of EP4 antagonists, the amides
and sulfonylureas. While the neutral amide analogs suffered from
poor pharmacokinetics due to extensive oxidative metabolism,
the sulfonylureas exhibited a greatly improved metabolic stability
and pharmacokinetic profile. MF-592, the optimal compound from
these efforts, exhibited the desired potency, selectivity, metabolic
stability and pharmacokinetic profiles that suggest that it is suit-
able for further development.
References and notes
13. (a) Burch, J. D.; Belley, M.; Réjean, F.; Deschênes, D.; Girard, M.; Colucci, J.;
Farand, J.; Therien, A. G.; Mathieu, M.-C.; Denis, D.; Vigneault, E.; Lévesque, J.-
F.; Gagné, S.; Wrona, M.; Xu, D.; Clark, P.; Rowland, S.; Han, Y. Bioorg. Med.
Chem. Lett. 2008, 18, 2048; (b) Molinaro, C.; Gauvreau, D.; Hughes, G.; Lau, S.;
Lauzon, S.; Angelaud, R.; O’Shea, P. D.; Janey, J.; Palucki, M.; Hoerrner, S. R.;
Raab, C. E.; Sidler, R. R.; Belley, M.; Han, Y. J. Org. Chem. 2009, 74, 6863.
1. Flower, R. J. Nat. Rev. Drug Disc. 2003, 2, 179.
2. Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.;
Day, R.; Bosi Ferraz, R.; Hawkey, C. J.; Hochberg, M. C.; Kvien, T. K.; Schnitzer, T.
J. N. Engl. J. Med. 2000, 343, 1520.
3. (a) Solomon, S. D.; McMurray, J. J. V.; Pfeiffer, M. A.; Wittes, J.; Fowler, R.; Finn,
P.; Anderson, W. F.; Zauber, A.; Hawk, E.; Bertagnolli, M. N. Engl. J. Med. 2005,