C O M M U N I C A T I O N S
Table 2. Asymmetric Rh(I)-Catalyzed Intramolecular Alder Ene
Table 4. Asymmetric Rh(I)-Catalyzed Alder Ene Reactions of 5 to
Reactiona
Form Aldehyde Substituted Lactonesa
entry
R
5
BINAP
6d
yield(%)b
ee(%)c
substrate
product
yield(%)b ee (%)c
1
2
3
4
5
Me
Me
5a
5a
5b
5c
5c
R-BINAP
S-BINAP
S-BINAP
R-BINAP
S-BINAP
(R)-(+)-6a
(S)-(-)-6a
(S)-(-)-6b
(R)-(+)-6c
(S)-(-)-6c
99
98
95
92
91
>99
>99
>99
>99
>99
1
2
entry
1
R
R
BINAP
2d
1
2
3
4
5
6
7
8
1a Ph
1b Ph
1c Ph
1c Ph
1d Me
1e Me
Et
H
S-BINAP
R-BINAP (R)-(-)-2b
(S)-(+)-2a
93
>99
>99
>99
>99
>99
>99
>99
>99
n-C5H11
Ph
94
92
93
92
98
90
95
Me R-BINAP (R)-(-)-2c
Me S-BINAP (S)-(+)-2c
H R-BINAP (R)-(-)-2d
Ph
a All the reactions were carried out in 2 mL of ClCH2CH2Cl in 0.2 mmol
scale. The ratio of substrates/[Rh(COD)Cl]2/BINAP/AgSbF6 was 1: 0.05:
0.11:0.20. This reaction finished within 2-10 min. b Isolated yield. c ee
value was detected by GC. (R) and (S) were compared with known
compounds 6a.
Me R-BINAP (R)-(-)-2e
H
1f n-C5H11
S-BINAP
(S)-(+)-2f
(S)-(+)-2g
d
1g n-C5H11 Me S-BINAP
a All the reactions were carried out in 2 mL of ClCH2CH2Cl in 0.2 mmol
scale. The ratio of substrate/[Rh(COD)Cl]2/BINAP/AgSbF6 was 1:0.05:0.11:
0.20. This reaction finished within 2-10 min. b Isolated yield. c ee value
was detected by GC or HPLC. d (R) and (S) were compared with known
compounds 6a.
Supporting Information Available: Spectroscopic data, GC, HPLC
spectra, and experiments details (PDF). This material is available free
References
Table 3. Asymmetric Rh(I)-Catalyzed Alder Ene Reactions of 3 to
(1) (a) Parker, W.; Roberts, J. S.; Ramage, R. Quart. ReV. 1967, 21, 331. (b)
Romo, J.; Romo de Viar, A. Prog. Chem. Org. Nat. Prod. 1967, 25, 90.
(c) Geissman, T. A.; Irwin, M. A. Pure Appl. Chem. 1970, 21, 167. (d)
Sto¨cklin, W.; Waddell, T. G.; Geissman, T. A. Tetrahedron 1970, 26,
2397, and references cited therein. (e) Tedeschi, E.; Kamionsky, J.; Zeider,
D.; Fackler, S. J. Org. Chem. 1974, 39, 1864. (f) Link, H.; Bernauer, K.
HelV. Chim. Acta. 1972, 55, 1053.
Form Functionalized Lactonesa
(2) (a) Lee, K.-H.; Meck, R.; Piantadosi, C.; Huang, E.-S. J. Med. Chem.
1973, 16, 299. (b) Lee, K.-H.; Huang, E.-S.; Piantadosi, C.; Pagano, J.
S.; Geissman, T. A. Cancer Res. 1971, 31, 1649. (c) Cavallito J. In
Medicinal Chemistry; Sute, C. M., Ed.; Wiley: New York, 1951; Vol. 1,
pp 221-235.
substrate
product
yield (%)b ee (%)c
1
2
entry
3
R
R
BINAP
4d
(3) (a) Leopold, I. H.; Keates, E. Clin. Pharm. Ther. 1968, 6, 262. (b) Worthen,
D. M.; Zimmerman, T. J.; Wind, C. A. InVest. Ophthalmol. 1974, 13,
296. (c) Sanders, H. J. Chem. Eng. News 1985, 63, 30.
1
2
3
4
5
6
7
8
9
3a Ph
3b Ph
3c Ph
3d Me
3d Me
3e Me
Ac R-BINAP (R)-(-)-4a
Me S-BINAP (S)-(+)-4b
Bn S-BINAP (S)-(+)-4c
Ac R-BINAP (R)-(-)-4d
Ac S-BINAP (S)-(+)-4d
Me S-BINAP (S)-(-)-4e
Bn S-BINAP (S)-(+)-4f
96
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
96
92
93
98
95
91
97
96
91
92
(4) (a) Goodman, L. S.; Gilman, A. The Pharmacological Basis of Thera-
peutics, 6th ed.; MacMillan: New York, 1980; p 97. (b) Manske, R. H.
F.; Homes, H. L. The Alkaloids; Academic Press: New York, 1953; Vol.
III, p 291. (c) Dreisbach, R. H. J. Pharmacol. Exp. Ther. 1961, 131, 257.
(d) Dreisbach, R. H. Am. J. Physiol. 1963, 204, 497. (e) Levy, B.;
Ahliquist, R. P. J. Pharmacol. Exp. Ther. 1962, 137, 219. (f) Watson, P.
G. Br. J. Ophthalmol. 1972, 56, 145. (g) Schwartz, B. New Engl. J. Med.
1978, 290, 182.
(5) (a) Wang, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 5213-5216. (b) Horne,
D. A.; Fugmann, B.; Yakushijin, K.; Bu¨chi, G. J. Org. Chem. 1993, 58,
62-64. (c) Compagnone, R. S.; Rapoport, H. J. Org. Chem. 1986, 51,
1713. (d) Noordam, A.; Maat, L.; Beyerman, H. C. R. Rec. J. R. Neth.
Chem. Soc. 1981, 100, 441. (e) Link, H.; Bernauer, K. HelV. Chim. Acta.
1972, 55, 1053. (f) DeGraw, J. I. Tetrahedron 1972, 28, 967. (g)
Chumachenko, A. V.; Zvonkova, E. N.; Evstigneeva, R. P. J. Org. Chem.
USSR (Engl. Transl.) 1972, 8, 1112. (h) Preobrashenski, N. A.; Poljakowa,
A. M.; Preobrashenski, W. A. Ber. Dtsch. Chem. Ges. 1936, 69, 1835. (i)
Dey, A. N. J. Chem. Soc. 1937, 1057.
3f
Me
3 g n-C5H11 Ac S-BINAP (S)-(+)-4g
3h n-C5H11 Me S-BINAP (S)-(-)-4h
10 3i
11 3i
n-C5H11 Bn R-BINAP (R)-(-)-4i
n-C5H11 Bn S-BINAP (S)-(+)-4i
a All the reactions were carried out in 2 mL of ClCH2CH2Cl in 0.2 mmol
scale. The ratio of substrate/[Rh(COD)Cl]2/BINAP/AgSbF6 was 1: 0.05:
0.11:0.20. This reaction finished within 2-10 min. b Isolated yield. c ee
value was detected by GC or HPLC. d (R) and (S) were compared with
known compounds 6a.
(6) (a) Grieco, P. A. Synthesis 1975, 67. (b) Petragnani, N.; Ferraz, H. M.
C.; Silva, G. V. ibid. 1986, 157. (c) Hoffman, H. M. R.; Rabe, J. Angew.
Chem., Int. Ed. Engl. 1985, 24, 94.
(7) (a) Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 733. (b) Ma, S.;
Lu, X. J. Org. Chem. 1991, 56, 5120.
two-step synthesis from commercially available 2-butynic acid and
(Z)-2-buten-1,4-diol using our method provided the intermediate
(R)-(+)-6a in over 99% ee and 91% overall yield. (+)-Pilocarpine
can be prepared in two additional steps from (R)-(+)-6a according
(8) (a) Trost, B. M. Acc. Chem. Res. 1990, 23, 34. (b) Trost, B. M.; Krische,
M. J. Synlett. 1998, 1. (c) Trost, B. M. Chem. Eur. J. 1998, 4, 2405. (d)
Trost, B. M.; Toste, D. J. Am. Chem. Soc. 2000, 122, 714. (e) Sturla, S.
J.; Kabalaeui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976
and references therein. (f) Trost, B. M.; Lee, D. C.; Rise, F. Tetrahedron
Lett. 1989, 30, 651. (g) Trost, B. M.; Czeskis, B. A. Tetrahedron Lett.
1994, 35, 211. (h) Goeke, A.; Sawamura, M.; Kuwano, R.; Ito, Y. Angew.
Chem. 1996, 108, 686; Angew. Chem., Int. Ed. Engl. 1996, 35, 662.
(9) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2000, 122, 6490-6491.
(10) (a) Zhang, Q.; Lu, X. J. Am. Chem. Soc. 2000, 122, 7604-7605. (b) Zhang,
Q.; Lu, X.; Han, X. J. Org. Chem. 2001, 66, 7676-7684.
5b
to the literature method (Scheme 1).
In conclusion, we developed an atom-economic, highly efficient
Rh(I)-catalyzed intramolecular Alder ene reaction, by which various
functionalized R-methylene-γ-butyrolactones were formed in high
yields with over 99% ee. Highly enantioselective syntheses of
functionalized carbocycles and heterocycles such as lactams,
pyrroles, and tetra-H-furans are currently in progress.
(11) (a) Cao, P.; Zhang, X. Angew. Chem., Int. Ed. 2000, 39, 4104-4106. (b)
Pd-catalyzed ene-type cyclization of a 1,6-enyne was reported using
BINAP as ligand, and ee value was up to 99% for one substrate. Hatano,
M.; Terada, M.; Mikami, K. Angew. Chem., Int. Ed. 2001, 40, 249-252.
Acknowledgment. This work was supported by NSF and NIH
grants.
JA020052J
9
J. AM. CHEM. SOC. VOL. 124, NO. 28, 2002 8199