of guanidiniocarbonyl pyrrole receptor 1. Under this condition,
the guanidinium cation can form an ion pair with the phosphate
anion, which is simultaneously hydrogen bonded by the pyrrole
NH and another amide NH. Meanwhile, the 4-amino moiety in
the 4-amino-1,8-naphthalimide structure is quite acid,16 favoring
the formation of a hydrogen bond between receptor 1 and PPi.
According to the molecular modeling studies (PM3 of MOPAC
2007 software), the rational preorganisation of receptor 1 provides
excellent geometric and charge complementarity to PPi (Fig. 3).
Due to the appropriate size and geometry of the pyrophosphate
anion, it is possible that the proton of the 4-amino moiety could
interact with the negative oxygen atom of PPi. The hydrogen
bond would promote the ICT of 4-amino-1,8-naphthalimide,
resulting in the fluorescence enhancement of receptor 1. Therefore,
the strength and selectivity of receptor 1 for the PPi binding
can be ascribed to the combined binding modes, namely, the
electrostatic interaction, multiple hydrogen bonds and geometric
complementarity between receptor 1 and PPi.
stable. The O–P oxygen atom of ATP cannot form a hydrogen
bond effectively with the 4-amino moiety, so the fluorescence of
receptor 1 changes by a small amount relative to that when PPi
binds. On the other hand, the total anionic charge density of the O–
P oxygen atoms involved in the complexation between ATP and
guanidiniocarbonyl pyrrole acyl hydrazine sites is smaller than
that of the O–P oxygen atoms of PPi.12 Therefore, the binding
affinity of receptor 1 to ATP is relatively weak. We have tried
to get the complexation-induced shift of receptor 1 to confirm
the interaction models, but unfortunately, the 1H NMR titrations
could not be performed because receptor 1 is not soluble enough
(millimolar concentrations would be required) in solvent systems
with the necessary higher water contents.
In conclusion, we have developed a fluorescent sensor based on
the guanidiniocarbonyl pyrrole moiety with high selectivity for
PPi in aqueous solution. The receptor shows excellent shape, size
and charge complementarity to PPi, which makes it an efficient
PPi sensor with the potential for bioanalytical applications.
Acknowledgements
We gratefully acknowledge the support from the Natural Science
Foundation of China (No. 20272045 and No. 20672085)
References
1 See two special issues on anion recognition: Coord. Chem. Rev., 2006,
250, 2917; Coord. Chem. Rev., 2003, 240, 1.
2 J. Y. Kwon, N. J. Singh, H. N. Kim, S. K. Kim, K. S. Kim and J. Yoon,
J. Am. Chem. Soc., 2004, 126, 8892; S. L. Tobey, B. D. Jones and E. V.
Anslyn, J. Am. Chem. Soc., 2003, 125, 4026; G. Zong, L. Xian and
G. Lu, Tetrahedron Lett., 2007, 48, 3891; L. Fabbrizzi, F. Foti and A.
Taglietti, Org. Lett., 2005, 7, 2603.
3 P. Anzenbacher, Jr., K. Jursikova´ and J. L. Sessler, J. Am. Chem. Soc.,
2000, 122, 9350; P. Anzenbacher, Jr., K. Jursikova´, V. M. Lynch, P. A.
Gale and J. L. Sessler, J. Am. Chem. Soc., 1999, 121, 11020.
4 D. H. Vance and A. W. Czarnik, J. Am. Chem. Soc., 1994, 116, 9397; K.
Niikura, A. Metzger and E. V. Anslyn, J. Am. Chem. Soc., 1998, 120,
8533; J. J. Lavigne and E. V. Anslyn, Angew. Chem., Int. Ed., 1999, 38,
3666.
5 L. Fabbrizzi, N. Marcotte, F. Stomeo and A. Taglietti, Angew. Chem.,
Int. Ed., 2002, 41, 3811; S. Mizukami, T. Nagano, Y. Urano, A. Odani
and K. Kikuchi, J. Am. Chem. Soc., 2002, 124, 3920; M. J. McDonough,
A. J. Reynolds, W. Y. G. Lee and K. A. Jolliffe, Chem. Commun., 2006,
28, 2971.
6 C. Schmuck, Chem. Commun., 1999, 843; C. Schmuck and J. Lex, Org.
Lett., 1999, 1, 1779; C. Schmuck and V. Bickert, Org. Lett., 2003, 5,
4579.
Fig. 3 Calculated energy-minimized structure for the complex between
receptor 1 and PPi.
The selectivity of receptor 1 for PPi over ATP can be understood
on the basis of the structure of the guest and the charge density of
O–P oxygen atoms of the guest involved in complexation. From
the energy-minimized structure of the receptor–ATP complex
(Fig. 4), we can see that the p–p stacking interaction between
the naphthalimide moiety and the adenine fragment, combined
with the electrostatic interaction and hydrogen bonds between the
guanidiniocarbonyl pyrrole moiety and the phosphate fragment,
make the conformation of the receptor–ATP complex relatively
7 C. Schmuck and M. Schwegmann, J. Am. Chem. Soc., 2005, 127, 3373;
C. Schmuck and L. Geiger, J. Am. Chem. Soc., 2005, 127, 10486; C.
Schmuck and J. Dudaczek, Tetrahedron Lett., 2005, 46, 7101.
8 L. Hernandez-Folgado, C. Schmuck, S. Tomic´ and I. Piantanida,
Bioorg. Med. Chem. Lett., 2008, 18, 2977.
9 Y. J. Jang, E. J. Jun, Y. J. Lee, Y. S. Kim, J. S. Kim and J. Yoon, J. Org.
Chem., 2005, 70, 9603; K. M. K. Swamy, Y. J. Lee, H. N. Lee, J. Chun,
Y. Kim, S.-J. Kim and J. Yoon, J. Org. Chem., 2006, 71, 8626.
10 T. Gunnlaugsson, T. C. Lee and R. Parkesh, Org. Lett., 2003, 5,
4065.
11 H. N. Lee, Z. Xu, S. K. Kim, K. M. K. Swamy, Y. Kim, S.-J. Kim and
J. Yoon, J. Am. Chem. Soc., 2007, 129, 3828.
12 D. H. Lee, S. Y. Kim and J.-I. Hong, Angew. Chem., Int. Ed., 2004, 43,
4777.
13 C. Schmuck and M. Schwegmann, Org. Lett., 2005, 7, 3517.
14 T. Gunnlaugsson, P. E. Kruger, P. Jensen, J. Tierney, H. D. P. Ali and
G. M. Hussey, J. Org. Chem., 2005, 70, 10875; D. Esteban-Grmez, L.
Fabbrizzi and M. Licchelli, J. Org. Chem., 2005, 70, 5717; B. Liu and
H. Tian, J. Mater. Chem., 2005, 15, 2681.
Fig. 4 Calculated energy-minimized structure for the complex between
receptor 1 and ATP.
3046 | Org. Biomol. Chem., 2008, 6, 3044–3047
This journal is
The Royal Society of Chemistry 2008
©