CLUSTER
Dehydrative Amination in Water
1541
(2) (a) Tsuji, J. Transition Metal Reagents and Catalysts:
OH
Nu
1 (10 mol%)
+
NuH
Innovations in Organic Synthesis; Wiley: Chichester, 2000.
(b) Trost, B. M.; Lee, C. In Catalytic Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; Wiley-VCH: Weinheim, 2000, 593–
649. (c) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998,
98, 1689.
H2O, 80 °C, 24 h
Ph
Ph
Ph
Ph
4
O
O
NMe
Ph
Ph
S
(3) For reviews of palladium-catalyzed amination of allylic
alcohols, see: (a) Muzart, J. Eur. J. Org. Chem. 2007, 3077.
(b) Muzart, J. Tetrahedron 2005, 61, 4179. (c) Tamaru, Y.
Eur. J. Org. Chem. 2005, 2647.
Ph
Ph
Ph
Ph
Ph
Ph
Ph
4a: 87%
(1.2 equiv NuH)
4c: 80%
(2 equiv NuH)
4b: 88%
(3 equiv NuH)
(4) For recent examples of metal-catalyzed amination of
alcohols, see: (a) Qin, H.; Yamagiwa, N.; Matsunaga, S.;
Shibasaki, M. Angew. Chem. Int. Ed. 2007, 46, 409.
(b) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F. J. Am.
Chem. Soc. 2007, 129, 7508. (c) Utsunomiya, M.;
Miyamoto, Y.; Ipposhi, J.; Ohshima, T.; Mashima, K. Org.
Lett. 2007, 9, 3371. (d) Tillack, A.; Hollmann, D.; Michalik,
D.; Beller, M. Tetrahedron Lett. 2006, 47, 8881.
(e) Terrasson, V.; Marque, S.; Georgy, M.; Campagne, J.-
M.; Prim, D. Adv. Synth. Catal. 2006, 348, 2063.
(f) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa,
M.; Wakiji, I.; Hidai, M.; Uemura, S. Chem. Eur. J. 2005,
11, 1433.
(5) A few examples of Brønsted acid catalyzed amination of
alcohols were reported, see: (a) Motokura, K.; Nakagiri, N.;
Mori, K.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda,
K. Org. Lett. 2006, 8, 4617. (b) Sanz, R.; Martínez, A.;
Álvarez-Gutiérrez, J. M.; Rodríguez, F. Eur. J. Org. Chem.
2006, 1383.
Scheme 2 Nucleophilic substitution reaction of benzhydrol in water
The proposed mechanism for the calix[4]resorcinarene
sulfonic acid 1-catalyzed dehydrative amination of alco-
hols is shown in Scheme 3. The water-soluble catalyst 1
forms host–guest complexes with alcohols in the organic–
aqueous interfacial layer. The dehydration reaction is pro-
moted by the sulfonic acid moieties on catalyst 1. The re-
sulting allylic or benzylic cation18 undergoes nucleophilic
attack by the amide, giving the amination product 3 with
regeneration of the catalyst 1.
organic phase
H
R2 OH
R2
N
Ts
R1
R1
(6) (a) Li, C.-J. Chem. Rev. 2005, 105, 3095. (b) Kobayashi, S.;
Manabe, K. Acc. Chem. Res. 2002, 35, 209. (c) Organic
Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic
and Professional: London, 1998. (d) Li, C.-J.; Chan, T.-H.
Organic Reactions in Aqueous Media; Wiley: New York,
1997. (e) Li, C.-J. Chem. Rev. 1993, 93, 2023.
3
Ts–NH2
R2
R2 OH
O3S
SO3H
HO3S
HO3S
R1
R1
– H2O
(7) (a) Aqueous-Phase Organometallic Catalysis: Concepts and
Applications, 2nd, Completely Revised and Enlarged
Edition; Cornils, B.; Herrmann, W. A., Eds.; Wiley-VCH:
Weinheim, 2004. (b) Aqueous-Phase Organometallic
Catalysis: Concepts and Applications; Cornils, B.;
Herrmann, W. A., Eds.; Wiley-VCH: Weinheim, 1998.
(8) For examples, see: (a) Bradley, D.; Williams, G.; Lombard,
H.; Holzapfel, C. W. Synth. Commun. 2001, 31, 2077.
(b) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.;
Uemura, S. J. Org. Chem. 1999, 64, 5593. (c) Purwanto, P.;
Delmas, H. Catal. Today 1995, 24, 135. (d) Kobayashi, S.;
Hachiya, I.; Yamanoi, Y. Bull. Chem. Soc. Jpn. 1994, 67,
2342. (e) Monteil, F.; Queau, R.; Kalck, P. J. Organomet.
Chem. 1994, 480, 177.
(9) For examples, see: (a) Hamada, T.; Manabe, K.; Kobayashi,
S. Chem. Eur. J. 2006, 12, 1205. (b) Mori, Y.; Manabe, K.;
Kobayashi, S. Angew. Chem. Int. Ed. 2001, 40, 2815.
(c) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martín-
Matute, B. J. Am. Chem. Soc. 2001, 123, 5358. (d) Tian,
H.-Y.; Chen, Y.-J.; Wang, D.; Bu, Y.-P.; Li, C.-J.
Tetrahedron Lett. 2001, 42, 1803. (e) Tian, H.-Y.; Chen, Y.-
J.; Wang, D.; Zeng, C.-C.; Li, C.-J. Tetrahedron Lett. 2000,
41, 2529. (f) Manabe, K.; Mori, Y.; Wakabayashi, T.;
Nagayama, S.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122,
7202.
aqueous phase
SO3H
HO3S
catalyst 1
Scheme 3 Proposed mechanism
In summary, a method for calix[4]resorcinarene sulfonic
acid 1-catalyzed dehydrative amination of alcohols in wa-
ter was developed.19 In the reaction system developed in
the present study, catalyst 1 worked, not only as a Brønst-
ed acid catalyst, but also as an inverse phase-transfer cat-
alyst. That is to say, 1 performs dual-function catalysis. It
is noteworthy that the present reaction proceeded under
nonmetallic conditions in water and, furthermore, the
aqueous phase containing catalyst 1 could be readily recy-
cled. This reaction system offers an efficient and green
method for the synthesis of nitrogen-containing com-
pounds.
References and Notes
(10) For reviews, see: (a) Starks, C. M.; Liotta, C. L.; Halpern,
M. In Phase-Transfer Catalysis: Fundamentals,
Applications, and Industrial Perspectives; Chapman:
London, 1994, 179–183. (b) Goldberg, Y. In Phase-
Transfer Catalysis: Selected Problems and Applications;
Gordon: Berkshire, 1992, 359–366.
(1) (a) Lawrence, S. A. Amines: Synthesis, Properties and
Applications; Cambridge University Press: Cambridge,
2004. (b) Hartwig, J. F. In Handbook of Organopalladium
Chemistry for Organic Synthesis, Vol. 1; Negishi, E.-I., Ed.;
Wiley-Interscience: New York, 2002, 1051–1096.
Synlett 2008, No. 10, 1539–1542 © Thieme Stuttgart · New York