ORGANIC
LETTERS
2008
Vol. 10, No. 21
4711-4714
Axial 4,4′,6,6′-Tetrakis-trifluoromethyl-
biphenyl-2,2′-diamine (TF-BIPHAM):
Resolution and Applications in
Asymmetric Hydrogenation
Chun-Jiang Wang,* Feng Gao, and Gang Liang
College of Chemistry and Molecular Sciences, Wuhan UniVersity, 430072, China
Received July 8, 2008
ABSTRACT
The racemic TF-BIPHAM was resolved for the first time, and the effectiveness of the resolved diamine was demonstrated by highly enantioselective
hydrogenation of r-aryl enamides and r-dehydroamino acid esters using readily accessible bis(aminophosphine) ligands.
Catalytic asymmetric reaction is one of the most powerful
methods for the synthesis of enantiomerically enriched
products, and ligand design based on a chiral backbone plays
a crucial role in this area.1 Among various applied chiral
skeletons, atropisomeric biaryl backbones, most notably 1,1′-
binaphthalene derivatives (e.g., BINOL, BINAP and BI-
NAM), occupy an important position in asymmetric synthesis
(Figure 1).2 Inspired by the tremendous success of BINAP
in asymmetric catalysis,3 some C2-symmetric biphenyl
diphosphines such as MeO-BIPHEP,4 TunePhos,5 SEGPhos,6
and P-Phos7 have been documented as efficient ligands in
asymmetric hydrogenation. Compared to the binaphthalene
counterpart, the steric and electronic properties of the
atropisomeric biphenyl framework are more easily modified.8
We are interested in the development of a new type of C2-
symmetric biphenyldiamine: the 4,4′,6,6′-Tetrakis-trifluoro-
methyl-biphenyl-2,2′-diamine (abbreviated to TF-BIPHAM).
Its precursor, dinitro compound, was reported early in 1949,9
however, the racemic TF-BIPHAM was first utilized as an
important intermediate for the synthesis of one less efficient
chiral ligand BIFUP until 1991.10 To the best of our
(1) (a) Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-
VCH: Weinheim, 2000. (b) ComprehensiVe Asymmetric Catalysi I-III;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999.
(c) Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley: New
York, 1994.
(2) For recent reviews, see: (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem.
ReV. 2003, 103, 3155. (b) Brunel, J. M. Chem. ReV. 2005, 105, 857. and
2007, 107, PR1. (c) Berthod, M.; Mignani, G.; Woodward, G.; Lemaire,
M. Chem. ReV. 2005, 105, 1801. (d) Telfer, S. G.; Kuroda, R. Coord. Chem.
ReV. 2003, 242, 33.
(5) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org. Chem. 2000,
65, 6223.
(6) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura,
T.; Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264.
(7) Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.; Chan, A. S. C.;
Wong, W. T. J. Am. Chem. Soc. 2000, 122, 11513.
(3) (a) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.;
Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932. (b) Noyori, R.
Angew. Chem., Int. Ed. 2002, 41, 2008.
(4) Schmid, R.; Broger, E. A.; Cereghtti, M.; Crameri, Y.; Foricher, J.;
Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure
Appl. Chem. 1996, 68, 131.
(8) For reviews: (a) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57,
3809. (b) Shimizu, H.; Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405.
(9) Bradsher, C. K.; Bond, J. B. J. Am. Chem. Soc. 1949, 71, 2659.
10.1021/ol8018677 CCC: $40.75
Published on Web 09/26/2008
2008 American Chemical Society