ORGANIC
LETTERS
2009
Vol. 11, No. 3
729-732
Orthogonal Synthesis of Isoindole and
Isoquinoline Derivatives from Organic
Azides
Benjamin Wei-Qiang Hui and Shunsuke Chiba*
DiVision of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological UniVersity, Singapore 637371, Singapore
Received December 6, 2008
ABSTRACT
r-Azido carbonyl compounds bearing a 2-alkenylaryl moiety at the r-position are found to be promising precursors for synthesis of isoindole
and isoquinoline derivatives via 1,3-dipolar cycloaddition of azides onto alkenes and 6π-electrocyclization of N-H imine intermediates, respectively.
Among numerous diverse approaches toward the synthesis
of azaheterocycles, both 1,3-dipolar cycloaddition of azides
onto alkenes1 and 6π-electrocyclization of azatrienes2,3 have
proven to be versatile methods for providing ready access
to azaheterocycles. Herein, we report an orthogonal meth-
odology for the synthesis of isoindole and isoquinoline
derivatives from R-azido carbonyl compounds possessing a
2-alkenylaryl moiety at the R-position, in which either
azide-alkene cycloaddition for isoindoles or 6π-electrocy-
clization for isoquinolines can be induced selectively by
slight modification of the reaction conditions.
Isoindoles and their derivatives are attractive candidates
for organic light-emitting devices (OLEDs) due to their high
fluorescent and electroluminescent properties,4 and they are
regarded as highly reactive substrates in [4+2]-cycloadditions
with various dienophiles for preparation of oligoacenes.5 We
envisaged that the intramolecular azide-alkene cycloaddition
reaction of 1 and subsequent elimination of dinitrogen from
(1) (a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247. (b) Padwa,
A. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed; Wiley-
Interscience: New York, 1984; Vol. 2, p 316. (c) Feldman, K. S.; Iyer,
M. R.; Lo´pez, C. S.; Faza, O. N. J. Org. Chem. 2008, 73, 5090. (d) Zhou,
Y.; Murphy, P. V. Org. Lett. 2008, 10, 3777. (e) Kim, S.; Lee, Y. M.; Lee,
J.; Lee, T.; Fu, Y.; Song, Y.; Cho, J.; Kim, D. J. Org. Chem. 2007, 72,
4886. (f) Huang, X.; Shen, R.; Zhang, T. J. Org. Chem. 2007, 72, 1534.
(g) Feldman, K. S.; Iyer, M. R.; Hester, D. K., II. Org. Lett. 2006, 8, 3116.
(h) Feldman, K. S.; Iyer, M. R. J. Am. Chem. Soc. 2005, 127, 4590. (i)
Hassner, A.; Amarasekara, A. S.; Andisik, D. J. Org. Chem. 1988, 53, 27.
(j) Liu, J.-M.; Young, J.-J.; Li, Y.-J.; Sha, C.-K. J. Org. Chem. 1986, 51,
1120. (k) Sundberg, R. J.; Pearce, B. C. J. Org. Chem. 1982, 47, 725. (l)
Smith, P. A. S.; Chou, S. P. J. Org. Chem. 1981, 46, 3970, and references
therein.
(3) For recent examples of 6π-electrocyclization of azatriene, see: (a)
Manning, J. R.; Davies, H. M. L. J. Am. Chem. Soc. 2008, 130, 8602. (b)
Liu, S.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 6918. (c) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 3645.
(d) Meketa, M. L.; Weinreb, S. M.; Nakao, Y.; Fusetani, N. J. Org. Chem.
2007, 72, 4892. (e) Tanaka, K.; Mori, H.; Yamamoto, M.; Katsumura, S.
J. Org. Chem. 2001, 66, 3099, and references therein.
(4) (a) Mi, B.-X.; Wang, P.-F.; Liu, M.-W.; Kwong, H.-L.; Wong, N.-
B.; Lee, C.-S.; Lee, S.-T. Chem. Mater. 2003, 15, 3148. (b) Ding, Y.; Hay,
A. S. J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 3293. (c) Gauvin, S.;
Santerre, F.; Dodelet, J. P.; Ding, Y.; Hlil, A. R.; Hay, A. S.; Anderson, J.;
Armstrong, N. R.; Gorjanc, T. C.; D‘Iorio, M. Thin Sold Films 1999, 353,
218. (d) Matuszewski, B. K.; Givens, R. S.; Srinivasachar, K.; Carlson,
R. G.; Higuchi, T. Anal. Chem. 1987, 59, 1102. (e) Zweig, A.; Metzler, G.;
Maurer, A.; Roberts, B. G. J. Am. Chem. Soc. 1967, 89, 4091.
(2) For reviews of 6π-electrocyclization, see: (a) Okamura, W. H.; de
Lera, A. R. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, UK, 1991; Vol. 5, p 699. (b) Marvell, E. N.
Thermal Electrocyclic Reactions; Academic Press: New York, 1980
.
10.1021/ol802816k CCC: $40.75
Published on Web 01/05/2009
2009 American Chemical Society