The antimalarial drug amodiaquine stabilizes p53 through ribosome biogenesis stress, independently of. . .
27. Lindstrom MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic
S. Nucleolus as an emerging hub in maintenance of genome sta-
bility and cancer pathogenesis. Oncogene. 2018;37:2351–66.
28. Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR,
McStay B. The shared genomic architecture of human nucleolar
organizer regions. Genome Res. 2013;23:2003–12.
29. Daniely Y, Borowiec JA. Formation of a complex between
nucleolin and replication protein A after cell stress prevents
initiation of DNA replication. J Cell Biol. 2000;149:799–810.
30. Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J.
RNA helicase DDX21 coordinates transcription and ribosomal
RNA processing. Nature. 2015;518:249–53.
46. White NJ. Can amodiaquine be resurrected? Lancet. 1996;348:
1184–5.
47. Shimizu S, Atsumi R, Itokawa K, Iwasaki M, Aoki T, Ono C,
et al. Metabolism-dependent hepatotoxicity of amodiaquine in
glutathione-depleted mice. Arch Toxicol. 2009;83:701–7.
48. Lobach AR, Uetrecht J. Involvement of myeloperoxidase and
NADPH oxidase in the covalent binding of amodiaquine and
clozapine to neutrophils: implications for drug-induced agranu-
locytosis. Chem Res Toxicol. 2014;27:699–709.
49. Maggs JL, Tingle MD, Kitteringham NR, Park BK. Drug-protein
conjugates–XIV. Mechanisms of formation of protein-arylating
intermediates from amodiaquine, a myelotoxin and hepatotoxin in
man. Biochem Pharmacol. 1988;37:303–11.
50. Li XQ, Bjorkman A, Andersson TB, Ridderstrom M, Masimir-
embwa CM. Amodiaquine clearance and its metabolism to N-
desethylamodiaquine is mediated by CYP2C8: a new high affinity
and turnover enzyme-specific probe substrate. J Pharm Exp Ther.
2002;300:399–407.
51. Zhang Y, Vermeulen NP, Commandeur JN. Characterization of
human cytochrome P450 mediated bioactivation of amodiaquine
and its major metabolite N-desethylamodiaquine. Br J Clin
Pharmcol. 2017;83:572–83.
52. Westerink WM, Schoonen WG. Cytochrome P450
enzyme levels in HepG2 cells and cryopreserved primary human
hepatocytes and their induction in HepG2 cells. Toxicol Vitr.
2007;21:1581–91.
53. Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S,
Vermeulen NPE, van de Water B, et al. Glutathione S-transferase
P1 protects against amodiaquine quinoneimines-induced cyto-
toxicity but does not prevent activation of endoplasmic reticulum
stress in HepG2 cells. Front Pharm. 2018;9:388.
31. Trere D. AgNOR staining and quantification. Micron. 2000;31:
127–31.
32. Horn HF, Vousden KH. Cooperation between the ribosomal pro-
teins L5 and L11 in the p53 pathway. Oncogene. 2008;27:5774–84.
33. Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nus-
senzweig A, et al. The ATM repair pathway inhibits RNA poly-
merase I transcription in response to chromosome breaks. Nature.
2007;447:730–4.
34. Larsen DH, Hari F, Clapperton JA, Gwerder M, Gutsche K,
Altmeyer M, et al. The NBS1-Treacle complex controls ribosomal
RNA transcription in response to DNA damage. Nat Cell Biol.
2014;16:792–803.
35. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y,
et al. Topoisomerase IIbeta mediated DNA double-strand breaks:
implications in doxorubicin cardiotoxicity and prevention by
dexrazoxane. Cancer Res. 2007;67:8839–46.
36. Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A,
Orban M, et al. Chemotherapeutic drugs inhibit ribosome bio-
genesis at various levels. J Biol Chem. 2010;285:12416–25.
37. Harding SM, Boiarsky JA, Greenberg RA. ATM dependent
silencing links nucleolar chromatin reorganization to DNA
damage recognition. Cell Rep. 2015;13:251–9.
54. Walsky RL, Gaman EA, Obach RS. Examination of 209 drugs
for inhibition of cytochrome P450 2C8. J Clin Pharmacol.
2005;45:68–78.
38. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ,
et al. Chloroquine inhibits autophagic flux by decreasing
autophagosome-lysosome fusion. Autophagy. 2018;14:1435–55.
39. McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, et al.
Autophagy inhibitor Lys05 has single-agent antitumor activity and
reproduces the phenotype of a genetic autophagy deficiency. Proc
Natl Acad Sci USA. 2012;109:8253–8.
55. Zhang W, Ramamoorthy Y, Kilicarslan T, Nolte H, Tyndale RF,
Sellers EM. Inhibition of cytochromes P450 by antifungal imi-
dazole derivatives. Drug Metab Dispos. 2002;30:314–8.
56. Morgado-Palacin L, Llanos S, Urbano-Cuadrado M, Blanco-
Aparicio C, Megias D, Pastor J, et al. Non-genotoxic activation of
p53 through the RPL11-dependent ribosomal stress pathway.
Carcinogenesis. 2014;35:2822–30.
40. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ,
et al. The Connectivity Map: using gene-expression signatures
to connect small molecules, genes, and disease. Science. 2006;
313:1929–35.
57. Hein N, Cameron DP, Hannan KM, Nguyen NN, Fong CY,
Sornkom J, et al. Inhibition of Pol I transcription treats murine and
human AML by targeting the leukemia-initiating cell population.
Blood. 2017;129:2882–95.
41. King MA, Ganley IG, Flemington V. Inhibition of cholesterol
metabolism underlies synergy between mTOR pathway inhibi-
tion and chloroquine in bladder cancer cells. Oncogene. 2016;
35:4518–28.
58. Cornelison R, Dobbin ZC, Katre AA, Jeong DH, Zhang Y, Chen
D, et al. Targeting RNA-polymerase I in both chemosensitive and
chemoresistant populations in epithelial ovarian cancer. Clin
Cancer Res. 2017;23:6529–40.
42. Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al.
Tumor vessel normalization by chloroquine independent of
autophagy. Cancer Cell. 2014;26:190–206.
43. Hetz C, Papa FR. The unfolded protein response and cell fate
control. Mol Cell. 2018;69:169–81.
44. Gallagher LE, Radhi OA, Abdullah MO, McCluskey AG, Boyd
M, Chan EYW. Lysosomotropism depends on glucose: a chlor-
oquine resistance mechanism. Cell Death Dis. 2017;8:e3014.
45. WHO. Guidelines for the treatment of malaria—3rd ed. Global
Malaria Programme. Geneva: WHO; 2015.
59. Lawrence MG, Obinata D, Sandhu S, Selth LA, Wong SQ,
Porter LH, et al. Patient-derived models of abiraterone- and
enzalutamide-resistant prostate cancer reveal sensitivity to
ribosome-directed therapy. Eur Urol. 2018;74:562–72.
60. Poortinga G, Quinn LM, Hannan RD. Targeting RNA polymerase
I to treat MYC-driven cancer. Oncogene. 2015;34:403–12.
61. Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P,
Sukhatme V, et al. Repurposing drugs in oncology (ReDO)-
chloroquine and hydroxychloroquine as anti-cancer agents.
Ecancermedicalscience. 2017;11:781.