A Topological View of Isomeric Dendrimers
Vögtle, Top. Curr. Chem. 2005, 248, 141–200; f) O. Lukin, F.
Vögtle, Angew. Chem. 2005, 117, 1480–1501; Angew. Chem. Int.
Ed. 2005, 44, 1456–1477; g) A. R. Thomson, D. A. Leigh, Org.
Lett. 2006, 8, 5377–5379; h) C. D. Meyer, C. S. Joiner, J. F.
Stoddart, Chem. Soc. Rev. 2007, 36, 1705–1723; i) J. Berná, G.
Bottari, D. A. Leigh, E. M. Pérez, Pure Appl. Chem. 2007, 79,
39–54.
a) T. Weiske, D. K. Bohme, J. Hrusak, H. Schwarz, Helv. Chim.
Acta 1992, 75, 79–89; b) Y. Rubin, Chem. Eur. J. 1997, 3, 1009–
1016.
P. Timmerman, W. Verboom, F. C. J. M. van Veggel, J. P. M.
van Duynhoven, D. N. Reinhoudt, Angew. Chem. 1994, 106,
2437–2440; Angew. Chem. Int. Ed. Engl. 1994, 33, 2345–2348.
a) C. A. Schalley, K. Beizai, F. Vögtle, Acc. Chem. Res. 2001,
34, 465–476; b) K. Mislow, Croat. Chem. Acta 1996, 69, 485–
511; c) J.-C. Chambron, C. Dietrich-Buchecker, J.-P. Sauvage,
Top. Curr. Chem. 1993, 165, 131–162.
a) O. Lukin, A. Godt, F. Vögtle, Chem. Eur. J. 2004, 10, 1878–
1883; b) E. Flapan, When Topology Meets Chemistry: A Topo-
logical Look at Molecular Chirality, Cambridge University
Press, Cambridge, 2000; c) H. Dodziuk, K. S. Nowinski, Tetra-
hedron 1998, 54, 2917–2930; d) C. Z. Liang, K. Mislow, J.
Math. Chem. 1994, 15, 245–260; e) C. C. Adams, The Knot
Book, Freeman, New York, 1994.
was added and increased the abundances of the sodium adducts
significantly. (iii) It was most efficient to directly mix a dichloro-
methane/methanol solution (ratios of 3:1 to 1:3 depending on the
sample solubility) of the sample with a chloroform solution of the
matrix (700-fold excess of the matrix over the sample).
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details including synthesis and characterization
data for all compounds.
[7]
[8]
[9]
Acknowledgments
We would like to thank Mr. M. Colussi and Dr. C. Münzenberg for
their professional assistance with the GPC analyses of the isomeric
mixtures. The Berlin group thanks Dr. Weise for the MALDI-TOF/
TOF measurements. The Zurich group thanks Professor A. D.
Schlüter (ETH Zurich) for his advice and continuous support.
C. A. S. thanks the Deutsche Forschungsgemeinschaft (DFG) and
the Fonds der Chemischen Industrie (FCI) for financial support,
and the FCI in particular for a Dozentenstipendium.
[10]
[1] For recent reviews, see: a) F. Zeng, S. C. Zimmerman, Chem.
Rev. 1997, 97, 1681–1712; b) A. Archut, F. Vögtle, Chem. Soc.
Rev. 1998, 27, 233–240; c) D. K. Smith, F. Diederich, Chem.
Eur. J. 1998, 4, 1351–1361; d) M. Fischer, F. Vögtle, Angew.
Chem. 1999, 111, 934–955; Angew. Chem. Int. Ed. 1999, 38,
884–905; e) A. W. Bosman, H. M. Jansen, E. W. Meijer, Chem.
Rev. 1999, 99, 1665–1688; f) G. R. Newkome, E. He, C. N.
Moorefield, Chem. Rev. 1999, 99, 1689–1746; g) J.-F. Nieren-
garten, Chem. Eur. J. 2000, 6, 3667–3670; h) A. D. Schlüter,
J. P. Rabe, Angew. Chem. 2000, 112, 860–880; Angew. Chem.
Int. Ed. 2000, 39, 864–883; i) G. R. Newkome, C. N. Moore-
field, F. Vögtle, Dendrimers and Dendrons – Concepts, Synthe-
ses, Applications, Wiley-VCH, Weinheim, 2001; j) R. Haag,
Chem. Eur. J. 2001, 7, 327–335; k) S. Hecht, J. M. J. Fréchet,
Angew. Chem. 2001, 113, 76–94; Angew. Chem. Int. Ed. 2001,
40, 74–91; l) J. M. J. Fréchet, D. A. Tomalia, Dendrimers and
other dendritic polymers, Wiley, New York, 2001; m) S. M. G.
Grayson, J. M. J. Fréchet, Chem. Rev. 2001, 101, 3819–3868; n)
C. A. Schalley, B. Baytekin, H. T. Baytekin, M. Engeser, T.
Felder, A. Rang, J. Phys. Org. Chem. 2006, 19, 479–490.
[2] a) E. Buhleier, W. Wehner, F. Vögtle, Synthesis 1978, 155–158;
for the divergent synthesis of PAMAM dendrimers, see: b)
D. A. Tomalia, H. Baker, J. R. Dewald, M. Hall, G. Kallos, S.
Martin, J. Roeck, J. Ryder, P. Smith, Polym. J. 1985, 17, 117–
132; for arborols, see: c) G. R. Newkome, A. Nayak, R. K. Be-
hera, C. N. Moorefield, G. R. Baker, J. Org. Chem. 1992, 57,
358–362; d) L. Wörner, R. Mülhaupt, Angew. Chem. 1993, 105
1367–1370; Angew. Chem. Int. Ed. Engl. 1993, 32, 1306–1308;
e) E. M. M. de Brabander-van den Berg, J. Brackman, M.
Mure-Mak, H. Man, M. Hogeweg, J. Keulen, R. Scherrenberg,
B. Coussens, Y. Mengerink, S. van der Wal, Macromol. Symp.
1996, 102, 9–17.
[11]
[12]
M. C. Etter, Acc. Chem. Res. 1990, 23, 120–126.
The following nomenclature is suggested to accurately describe
the dendrographs even when the commonly used term “genera-
tion” becomes somewhat blurred in highly unsymmetrical den-
drimers. The dendrographs depicted in Figures 2 and 3 can be
classified by at least three numbers. The first number depicts
the total number of peripheral groups and the following two
figures indicate numbers of peripheral groups on the left and
right branches. For example, the dendrograph descriptors for
compounds 1 and 2 (Figure 2), each bearing four peripheral
groups, are 4-2/2 and 4-3/1. As the dendrograph becomes large,
additional figures are introduced to specify the structure of
branched subunits recursively. For example, the dendrograph
corresponding to compound 9 in Figure 3 is described as 7-(6-
(4-2/2)/2)/1. This notation describes a dendrograph with a total
of seven peripheral groups, six of which are on one branch
attached to the focal point. The distribution of the six groups
is recursively described by similar notation. Four of them are
attached symmetrically to one sub-branch; the other two are
attached to the other. The dendrograph descriptors can be used
to encode or decode the structure of any dendrimer. The
number of all possible dendrographs can as easily be calculated
by a recursive algorithm as the number of isomers for linear
and branched alkanes. Two isomers with four peripheral
groups are possible, three with five, six with six, eleven with
seven and so on if the core and the branching points are biva-
lent. Analogously, the nomenclature can easily be extended to
dendrimers with a higher number of substituents at the core
and/or the branching points. It is flexible enough even for den-
dritic structures that have different valencies at the core and at
the branches.
[3] a) C. J. Hawker, J. M. J. Fréchet, J. Am. Chem. Soc. 1990, 112,
7638–7647; b) C. J. Hawker, J. M. J. Fréchet, J. Chem. Soc.,
Chem. Commun. 1990, 1010–1013.
[4] A. Archut, S. Gestermann, R. Hesse, C. Kauffmann, F. Vögtle,
Synlett 1998, 5, 546–548.
[5] a) O. Lukin, V. Gramlich, R. Kandre, I. Zhun, T. Felder, C. A.
Schalley, G. Dolgonos, J. Am. Chem. Soc. 2006, 128, 8964–
8974; b) O. Lukin, D. Schubert, C. Müller, M. Corda, R. Kan-
dre, J. Org. Chem. 2008, 73, 3562–3565.
[6] a) G. Schill, C. Zürcher, W. Vetter, Chem. Ber. 1973, 106, 228–
235; b) D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95,
2725–2828; c) J.-P. Sauvage, C. B. Dietrich-Buchecker, Molecu-
lar Catenanes, Rotaxanes and Knots, Wiley-VCH, Weinheim,
1999; d) G. F. Swiegers, T. J. Malefetse, Chem. Rev. 2000, 100,
3483–3537; e) C. A. Schalley, T. Weilandt, J. Brüggemann, F.
[13]
[14]
a) T. L. Chasse, R. Sachdeva, C. Li, Z. M. Li, R. J. Petrie, C. B.
Gorman, J. Am. Chem. Soc. 2003, 125, 8250–8254; b) T. L.
Chasse, J. C. Yohannan, N. Kim, Q. Li, Z. M. Li, C. B. Gor-
man, Tetrahedron 2003, 59, 3853–3861.
a) M. Trollsas, B. Atthof, A. Wursch, J. L. Hedrick, J. A. Pople,
A. P. Gast, Macromolecules 2000, 33, 6423–6438; b) S. Li, D. V.
McGrath, J. Am. Chem. Soc. 2000, 122, 6795–6796.
C. J. Hawker, E. E. Malmstrom, C. W. Frank, J. P. Kampf, J.
Am. Chem. Soc. 1997, 119, 9903–9904.
D. Grebel-Koehler, D. J. Liu, S. De Feyter, V. Enkelmann, T.
Weil, C. Engels, C. Samyn, K. Müllen, F. C. De Schryver, Mac-
romolecules 2003, 36, 578–590.
[15]
[16]
[17]
C. J. Gabriel, J. R. Parquette, J. Am. Chem. Soc. 2006, 128,
13708–13709.
Eur. J. Org. Chem. 2008, 4148–4156
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4155